350 research outputs found

    Experimental Observation of a Minority Electron Mobility Enhancement in degenerately doped p-Type GaAs

    Get PDF
    The variation of minority electron mobility with doping density in p+-GaAs has been measured with the zero-field time-of-flight technique. The results from a series of nine GaAs films doped between 1 X lOI and 8 X 10” cmm3 show the mobility decreasing from 1950 cm2 V-’ s-l at 1 X 10” cmm3 to 1370 cm2 V-l s-l at 9X 10” cmB3. For the doping range 9 x 1018-8x 1019 cme3, the decreasing trend in mobility is reversed. The measured mobility of 3710 cm2 V-’ s-l at 8 X 10” cmp3 is about three times higher than the measured value at 9 X 1018 cmm3. These results confirm and extend recent transistor-based measurements and are in accord with recent theoretical predictions that attribute the increase in minority electron mobility in p+-GaAs to reductions in plasmon and carrier-carrier scattering at high hole densities

    Singlet-to-triplet interconversion using hyperfine as well as ferromagnetic fringe fields

    Get PDF
    Until recently the important role that spin-physics ('spintronics') plays in organic light-emitting devices and photovoltaic cells was not sufficiently recognized. This attitude has begun to change. We review our recent work that shows that spatially rapidly varying local magnetic fields that may be present in the organic layer dramatically affect electronic transport properties and electroluminescence efficiency. Competition between spin-dynamics due to these spatially varying fields and an applied, spatially homogeneous magnetic field leads to large magnetoresistance, even at room temperature where the thermodynamic influences of the resulting nuclear and electronic Zeeman splittings are negligible. Spatially rapidly varying local magnetic fields are naturally present in many organic materials in the form of nuclear hyperfine fields, but we will also review a second method of controlling the electrical conductivity/electroluminescence, using the spatially varying magnetic fringe fields of a magnetically unsaturated ferromagnet. Fringe-field magnetoresistance has a magnitude of several per cent and is hysteretic and anisotropic. This new method of control is sensitive to even remanent magnetic states, leading to different conductivity/electroluminescence values in the absence of an applied field. We briefly review a model based on fringe-field-induced polaronpair spin-dynamics that successfully describes several key features of the experimental fringe-field magnetoresistance and magnetoelectroluminescence

    Organic magnetoelectroluminescence for room temperature transduction between magnetic and optical information

    Get PDF
    Magnetic and spin-based technologies for data storage and processing provide unique challenges for information transduction to light because of magnetic metals' optical loss, and the inefficiency and resistivity of semiconductor spin-based emitters at room temperature. Transduction between magnetic and optical information in typical organic semiconductors poses additional challenges, as the spin-orbit interaction is weak and spin injection from magnetic electrodes has been limited to low temperature and low polarization efficiency. Here we demonstrate room temperature information transduction between a magnet and an organic light-emitting diode that does not require electrical current, based on control via the magnet's remanent field of the exciton recombination process in the organic semiconductor. This demonstration is explained quantitatively within a theory of spin-dependent exciton recombination in the organic semiconductor, driven primarily by gradients in the remanent fringe fields of a few nanometre-thick magnetic film

    Hysteretic control of organic conductance due to remanent magnetic fringe fields

    Get PDF
    Manipulation of the remanent (zero external magnetic field) magnetization state of a single ferromagnetic film is shown to control the room-temperature conductance of an organic semiconductor thin film deposited on top. For the organic semiconductor Alq3, the magnetic fringe fields from a multidomain remanent magnetization state of the film enhance the device conductance by several percent relative to its value for the magnetically saturated ferromagnetic film. The effect of fringe fields is insensitive to ferromagnetic film's thickness (which varies the fringe field magnitude proportionately) but sensitive to the magnetic domain's correlation length

    Phylotastic! Making Tree-of-Life Knowledge Accessible, Reusable and Convenient

    Get PDF
    Scientists rarely reuse expert knowledge of phylogeny, in spite of years of effort to assemble a great "Tree of Life" (ToL). A notable exception involves the use of Phylomatic, which provides tools to generate custom phylogenies from a large, pre-computed, expert phylogeny of plant taxa. This suggests great potential for a more generalized system that, starting with a query consisting of a list of any known species, would rectify non-standard names, identify expert phylogenies containing the implicated taxa, prune away unneeded parts, and supply branch lengths and annotations, resulting in a custom phylogeny suited to the user's needs. Such a system could become a sustainable community resource if implemented as a distributed system of loosely coupled parts that interact through clearly defined interfaces. Results: With the aim of building such a "phylotastic" system, the NESCent Hackathons, Interoperability, Phylogenies (HIP) working group recruited 2 dozen scientist-programmers to a weeklong programming hackathon in June 2012. During the hackathon (and a three-month follow-up period), 5 teams produced designs, implementations, documentation, presentations, and tests including: (1) a generalized scheme for integrating components; (2) proof-of-concept pruners and controllers; (3) a meta-API for taxonomic name resolution services; (4) a system for storing, finding, and retrieving phylogenies using semantic web technologies for data exchange, storage, and querying; (5) an innovative new service, DateLife.org, which synthesizes pre-computed, time-calibrated phylogenies to assign ages to nodes; and (6) demonstration projects. These outcomes are accessible via a public code repository (GitHub.com), a website (www.phylotastic.org), and a server image. Conclusions: Approximately 9 person-months of effort (centered on a software development hackathon) resulted in the design and implementation of proof-of-concept software for 4 core phylotastic components, 3 controllers, and 3 end-user demonstration tools. While these products have substantial limitations, they suggest considerable potential for a distributed system that makes phylogenetic knowledge readily accessible in computable form. Widespread use of phylotastic systems will create an electronic marketplace for sharing phylogenetic knowledge that will spur innovation in other areas of the ToL enterprise, such as annotation of sources and methods and third-party methods of quality assessment.NESCent (the National Evolutionary Synthesis Center)NSF EF-0905606iPlant Collaborative (NSF) DBI-0735191Biodiversity Synthesis Center (BioSync) of the Encyclopedia of LifeComputer Science

    Detecting the Companions and Ellipsoidal Variations of RS CVn Primaries: I. sigma Geminorum

    Get PDF
    To measure the properties of both components of the RS CVn binary sigma Geminorum (sigma Gem), we directly detect the faint companion, measure the orbit, obtain model-independent masses and evolutionary histories, detect ellipsoidal variations of the primary caused by the gravity of the companion, and measure gravity darkening. We detect the companion with interferometric observations obtained with the Michigan InfraRed Combiner (MIRC) at Georgia State University's Center for High Angular Resolution Astronomy (CHARA) Array with a primary-to-secondary H-band flux ratio of 270+/-70. A radial velocity curve of the companion was obtained with spectra from the Tillinghast Reflector Echelle Spectrograph (TRES) on the 1.5-m Tillinghast Reflector at Fred Lawrence Whipple Observatory (FLWO). We additionally use new observations from the Tennessee State University Automated Spectroscopic and Photometric Telescopes (AST and APT, respectively). From our orbit, we determine model-independent masses of the components (M_1 = 1.28 +/- 0.07 M_Sun, M_2 = 0.73 +/- 0.03 M_Sun), and estimate a system age of 5 -/+ 1 Gyr. An average of the 27-year APT light curve of sigma Gem folded over the orbital period (P = 19.6027 +/- 0.0005 days) reveals a quasi-sinusoidal signature, which has previously been attributed to active longitudes 180 deg apart on the surface of sigma Gem. With the component masses, diameters, and orbit, we find that the predicted light curve for ellipsoidal variations due to the primary star partially filling its Roche lobe potential matches well with the observed average light curve, offering a compelling alternative explanation to the active longitudes hypothesis. Measuring gravity darkening from the light curve gives beta < 0.1, a value slightly lower than that expected from recent theory.Comment: Accepted to ApJ, 11 pages, 6 figures, 8 table
    corecore