165 research outputs found

    Status of LDEF activation measurements and archive

    Get PDF
    We review the status of induced radioactivity measurements for the LDEF spacecraft which includes studies of the nuclide, target, directional and depth dependences of the activation. Analysis of the data has focused on extraction of the specific activities for many materials to develop a global picture of the low Earth orbital environment to which the LDEF was subjected. Preliminary comparisons of data in a previous review showed that it was possible to make meaningful intercomparisons between results obtained at different facilities. Generally these comparisons were good and gave results to within 10-20 percent, although some analysis remains. These results clearly provide constraints for recent calculations being performed of the radiation environment of the LDEF. We are not anticipating a period of production of final activation results. An archive is being prepared jointly between NASA/Marshall and Eastern Kentucky University which will include gamma ray spectra and other intermediate results

    Quenching of the radio jet during the X-ray high state of GX 339-4

    Get PDF
    We have observed the black hole candidate X-ray binary GX 339-4 at radio wavelengths before, during and after the 1998 high/soft X-ray state transition. We find that the radio emission from the system is strongly correlated with the hard X-ray emission and is reduced by a factor > 25 during the high/soft state compared to the more usual low/hard state. At the points of state transition we note brief periods of unusually optically-thin radio emission which may correspond to discrete ejection events. We propose that in the low/hard state black hole X-ray binaries produce a quasi-continuous outflow, in the high/soft state this outflow is suppressed, and that state transitions often result in one or more discrete ejection events. Future models for low/hard states, such as ADAF/ADIOS solutions, need to take into account strong outflow of relativistic electrons from the system. We propose that the inferred Comptonising corona and the base of the jet-like outflow are the same thing, based upon the strong correlation between radio and hard X-ray emission in GX 339-4 and other X-ray binaries, and the similarity in inferred location and composition of these two components.Comment: Accepted for publication in ApJ Letter

    Commensurate antiferromagnetic ordering in Ba(Fe{1-x}Co{x})2As2 determined by x-ray resonant magnetic scattering at the Fe K-edge

    Get PDF
    We describe x-ray resonant magnetic diffraction measurements at the Fe K-edge of both the parent BaFe2As2 and superconducting Ba(Fe0.953Co0.047)2As2 compounds. From these high-resolution measurements we conclude that the magnetic structure is commensurate for both compositions. The energy spectrum of the resonant scattering is in reasonable agreement with theoretical calculations using the full-potential linear augmented plane wave method with a local density functional.Comment: 5 pages, 3 figures; accepted for publication in Phys. Rev. B Rapid Com

    Gamma ray monitoring of a AGN and galactic black hole candidates by the Compton Gamma Ray Observatory

    Get PDF
    The Compton Gamma-Ray Observatory's Burst and Transient Source Experiment (BATSE) has a powerful capability to provide nearly uninterrupted monitoring in the 25 keV-10 MeV range of both active galactic nuclei (AGN) and galactic black hole candidates (GBHC) such as Cygnus X-1, using the occultation of cosmic sources by the Earth. Since the Crab is detected by the BATSE Large Area Detectors with roughly 25(sigma) significance in the 15-125 keV range in a single rise or set, a variation by a factor of two of a source having one-tenth the strength of Cygnus X-1 should be detectable within a day. Methods of modeling the background are discussed which will increase the accuracy, sensitivity, and reliability of the results beyond those obtainable from a linear background fit with a single rise or set discontinuity

    Effects of transition metal substitutions on the incommensurability and spin fluctuations in BaFe2As2 by elastic and inelastic neutron scattering

    Get PDF
    The spin fluctuation spectra from nonsuperconducting Cu-substituted, and superconducting Co-substituted, BaFe2As2 are compared quantitatively by inelastic neutron scattering measurements and are found to be indis- tinguishable. Whereas diffraction studies show the appearance of incommensurate spin-density wave order in Co and Ni substituted samples, the magnetic phase diagram for Cu substitution does not display incommensu- rate order, demonstrating that simple electron counting based on rigid-band concepts is invalid. These results, supported by theoretical calculations, suggest that substitutional impurity effects in the Fe plane play a signifi- cant role in controlling magnetism and the appearance of superconductivity, with Cu distinguished by enhanced impurity scattering and split-band behavior.Comment: 5 pages, 5 figures, Major change in the manuscrip

    A Sequence of Outbursts from the Transient X-Ray Pulsar GS 0834-430

    Get PDF
    GS 0834-430, a 12.3 s accretion-powered pulsar, has been observed in seven outbursts with the BATSE large-area detectors on the Compton Gamma Ray Observatory. The first five outbursts observed by BATSE occurred at intervals of about 107 days, while the final two outbursts were separated by about 140 days. The photon energy spectrum, measured by Earth occultation in the 20-100 keV band, can be fitted by a power law with photon index α ≈ -3.7 or by an exponential spectrum with temperature kT ≈ 15 keV, with some variations within outbursts. The source has a low pulse fraction, ≾ 0.15 in the 20-50 keV band. We have observed significant temporal and energy-dependent variations in epoch folded pulse profiles. Because the intrinsic torque effects for this system are at least comparable to orbital effects, pulse timing analysis did not produce a unique orbital solution. However, confidence regions for the orbital elements yielded the following 1 σ limits: orbital period P_(orb) = 105.8 ± 0.4 days and eccentricity 0.10 ≾ e ≾ 0.17. GS 0834-430 is most likely a Be/X-ray binary

    Pressure-induced collapsed-tetragonal phase in SrCo2As2

    Get PDF
    We present high-energy x-ray diffraction data under applied pressures up to p = 29 GPa, neutron diffraction measurements up to p = 1.1 GPa, and electrical resistance measurements up to p = 5.9 GPa, on SrCo2As2. Our x-ray diffraction data demonstrate that there is a first-order transition between the tetragonal (T) and collapsed-tetragonal (cT) phases, with an onset above approximately 6 GPa at T = 7 K. The pressure for the onset of the cT phase and the range of coexistence between the T and cT phases appears to be nearly temperature independent. The compressibility along the a-axis is the same for the T and cT phases whereas, along the c-axis, the cT phase is significantly stiffer, which may be due to the formation of an As-As bond in the cT phase. Our resistivity measurements found no evidence of superconductivity in SrCo2As2 for p <= 5.9 GPa and T >= 1.8 K. The resistivity data also show signatures consistent with a pressure-induced phase transition for p >= 5.5 GPa. Single-crystal neutron diffraction measurements performed up to 1.1 GPa in the T phase found no evidence of stripe-type or A-type antiferromagnetic ordering down to 10 K. Spin-polarized total-energy calculations demonstrate that the cT phase is the stable phase at high pressure with a c/a ratio of 2.54. Furthermore, these calculations indicate that the cT phase of SrCo2As2 should manifest either A-type antiferromagnetic or ferromagnetic order.Comment: 6 pages, 5 figure

    Spin-flop transition in Gd5Ge4 observed by x-ray resonant magnetic scattering and first-principles calculations of magnetic anisotropy

    Get PDF
    X-ray resonant magnetic scattering was employed to study a fully reversible spin-flop transition in orthorhombic Gd5Ge4 and to elucidate details of the magnetic structure in the spin-flop phase. The orientation of the moments at the three Gd sites flop 90° from the c axis to the a axis when a magnetic field, Hsf=9 kOe, is applied along the c axis at T=9 K. The magnetic space group changes from Pnm′a to Pn′m′a′ for all three Gd sublattices. The magnetic anisotropy energy determined from experimental measurements is in good agreement with the calculations of the magnetic anisotropy based on the spin-orbit coupling of the conduction electrons and an estimation of the dipolar interactions anisotropy. No significant magnetostriction effects were observed at the spin-flop transition
    • …
    corecore