1,189 research outputs found

    Two particles on a star graph II

    Full text link
    We consider a two particle system on a star graph with delta-function interaction. A complete description of the eigensolutions with real momenta is given; specifically it is shown that all eigensolutions can be written as integrals in the momentum plane of sums of products of appropriate one particle solutions.Comment: typos corrected, minor changes, journal ref adde

    New paradoxical games based on Brownian ratchets

    Get PDF
    Based on Brownian ratchets, a counter-intuitive phenomenon has recently emerged -- namely, that two losing games can yield, when combined, a paradoxical tendency to win. A restriction of this phenomenon is that the rules depend on the current capital of the player. Here we present new games where all the rules depend only on the history of the game and not on the capital. This new history-dependent structure significantly increases the parameter space for which the effect operates.Comment: 4 pages, 3 eps figures, revte

    New synthetic cannabinoids and the potential for cardiac arrhythmia risk

    Get PDF
    Synthetic cannabinoid receptor agonists (SCRAs) have been associated with QT interval prolongation. Limited preclinical information on SCRA effects on cardiac electrogenesis results from the rapid emergence of new compounds and restricted research availability. We used two machine-learning-based tools to evaluate seven novel SCRAs' interaction potential with the hERG potassium channel, an important drug antitarget. Five SCRAs were predicted to have the ability to block the hERG channel by both prediction tools; ADB-FUBIATA was predicted to be a strong hERG blocker. ADB-5Br-INACA and ADB-4en-PINACA showed varied predictions. These findings highlight potentially proarrhythmic hERG block by novel SCRAs, necessitating detailed safety evaluations

    Membership, metallicity and lithium abundances for solar-type stars in NGC 6633

    Full text link
    We present spectroscopic observations of candidate F, G and K type stars in NGC 6633, an open cluster with a similar age to the Hyades. We identify 10 new cluster members including one short period binary system. Combining this survey with that of Jeffries (1997), we identify a total of 30 solar-type members. We have used the F and early G stars to spectroscopically estimate [Fe/H]=-0.096+/-0.081 for NGC 6633 and with more precision that NGC 6633 has (0.074+/-0.041) dex less iron than the Pleiades and (0.206+/-0.040) dex less iron than the Hyades. Lithium abundances have been estimated for the NGC 6633 members and compared with consistently determined Li abundances in other clusters. Several mid F stars in NGC 6633 show strong Li depletion at approximately the same effective temperature that this phenomenon is seen in the Hyades. At cooler temperatures the Li abundance patterns in several open clusters with similar ages (NGC 6633, Hyades, Praesepe and Coma Berenices) are remarkably similar, despite their differing [Fe/H]. There is however evidence that the late G and K stars of NGC 6633 have depleted less Li than their Hyades counterparts. This qualitatively agrees with models for pre-main sequence Li depletion that feature only convective mixing, but these models cannot simultaneously explain why these stars have in turn depleted Li by more than 1 dex compared with their ZAMS counterparts in the Pleiades. Two explanations are put forward. The first is that elemental abundance ratios, particularly [O/Fe], may have non-solar values in NGC 6633 and would have to be higher than in either the Hyades or Pleiades. The second is that additional non-convective mixing, driven by angular momentum loss, causes additional photospheric Li depletion during the first few hundred Myr of main sequence evolution.Comment: Accepted for MNRAS - some figures are compressed, a better version can be found at http://www.astro.keele.ac.uk/~rdj

    Quantum field theory on quantum graphs and application to their conductance

    Full text link
    We construct a bosonic quantum field on a general quantum graph. Consistency of the construction leads to the calculation of the total scattering matrix of the graph. This matrix is equivalent to the one already proposed using generalized star product approach. We give several examples and show how they generalize some of the scattering matrices computed in the mathematical or condensed matter physics litterature. Then, we apply the construction for the calculation of the conductance of graphs, within a small distance approximation. The consistency of the approximation is proved by direct comparison with the exact calculation for the `tadpole' graph.Comment: 32 pages; misprints in tree graph corrected; proofs of consistency and unitarity adde

    In situ monolayer patch clamp of acutely stimulated human iPSC-derived cardiomyocytes promotes consistent electrophysiological responses to SK channel inhibition

    Get PDF
    Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) represent an in vitro model of cardiac function. Isolated iPSC-CMs, however, exhibit electrophysiological heterogeneity which hinders their utility in the study of certain cardiac currents. In the healthy adult heart, the current mediated by small conductance, calcium-activated potassium (SK) channels (ISK) is atrial-selective. Functional expression of ISK within atrial-like iPSC-CMs has not been explored thoroughly. The present study therefore aimed to investigate atrial-like iPSC-CMs as a model system for the study of ISK. iPSCs were differentiated using retinoic acid (RA) to produce iPSC-CMs which exhibited an atrial-like phenotype (RA-iPSC-CMs). Only 18% of isolated RA-iPSC-CMs responded to SK channel inhibition by UCL1684 and isolated iPSC-CMs exhibited substantial cell-to-cell electrophysiological heterogeneity. This variability was significantly reduced by patch clamp of RA-iPSC-CMs in situ as a monolayer (iPSC-ML). A novel method of electrical stimulation was developed to facilitate recording from iPSC-MLs via In situ Monolayer Patch clamp of Acutely Stimulated iPSC-CMs (IMPASC). Using IMPASC, &gt; 95% of iPSC-MLs could be paced at a 1 Hz. In contrast to isolated RA-iPSC-CMs, 100% of RA-iPSC-MLs responded to UCL1684, with APD50 being prolonged by 16.0 ± 2.0 ms (p &lt; 0.0001; n = 12). These data demonstrate that in conjunction with IMPASC, RA-iPSC-MLs represent an improved model for the study of ISK. IMPASC may be of wider value in the study of other ion channels that are inconsistently expressed in isolated iPSC-CMs and in pharmacological studies.<br/

    Optical and Infrared Spectroscopy of the type IIn SN 1998S : Days 3-127

    Full text link
    We present contemporary infrared and optical spectroscopic observations of the type IIn SN 1998S for the period between 3 and 127 days after discovery. In the first week the spectra are characterised by prominent broad emission lines with narrow peaks superimposed on a very blue continuum(T~24000K). In the following two weeks broad, blueshifted absorption components appeared in the spectra and the temperature dropped. By day 44, broad emission components in H and He reappeared in the spectra. These persisted to 100-130d, becoming increasingly asymmetric. We agree with Leonard et al. (2000) that the broad emission lines indicate interaction between the ejecta and circumstellar material (CSM) and deduce that progenitor of SN 1998S appears to have gone through at least two phases of mass loss, giving rise to two CSM zones. Examination of the spectra indicates that the inner zone extended to <90AU, while the outer CSM extended from 185AU to over 1800AU. Analysis of high resolution spectra shows that the outer CSM had a velocity of 40-50 km/s. Assuming a constant velocity, we can infer that the outer CSM wind commenced more than 170 years ago, and ceased about 20 years ago, while the inner CSM wind may have commenced less than 9 years ago. During the era of the outer CSM wind the outflow was high, >2x10^{-5}M_{\odot}/yr corresponding to a mass loss of at least 0.003M_{\odot} and suggesting a massive progenitor. We also model the CO emission observed in SN 1998S. We deduce a CO mass of ~10^{-3} M_{\odot} moving at ~2200km/s, and infer a mixed metal/He core of ~4M_{\odot}, again indicating a massive progenitor.Comment: 22 pages, 14 figures, accepted in MNRA

    Bosonization and Scale Invariance on Quantum Wires

    Get PDF
    We develop a systematic approach to bosonization and vertex algebras on quantum wires of the form of star graphs. The related bosonic fields propagate freely in the bulk of the graph, but interact at its vertex. Our framework covers all possible interactions preserving unitarity. Special attention is devoted to the scale invariant interactions, which determine the critical properties of the system. Using the associated scattering matrices, we give a complete classification of the critical points on a star graph with any number of edges. Critical points where the system is not invariant under wire permutations are discovered. By means of an appropriate vertex algebra we perform the bosonization of fermions and solve the massless Thirring model. In this context we derive an explicit expression for the conductance and investigate its behavior at the critical points. A simple relation between the conductance and the Casimir energy density is pointed out.Comment: LaTex 31+1 pages, 2 figures. Section 3.6 and two references added. To appear in J. Phys. A: Mathematical and Theoretica

    Molecular features of lipoprotein CD0873 - a potential vaccine against the human pathogen Clostridioides difficile

    Get PDF
    This is the final version. Available on open access from the American Society for Biochemistry and Molecular Biology via the DOI in this recordClostridioides difficile is the primary cause of antibiotic-associated diarrhoea and colitis, a healthcare-associated intestinal disease resulting in a significant fatality rate. Colonization of the gut is critical for C. difficile pathogenesis, and the bacterial molecules essential for efficient colonization therefore offer great potential as vaccine candidates. Here we present findings demonstrating that the C. difficile immunogenic lipoprotein CD0873 plays a critical role in pathogen success in vivo. We found that in a dixenic colonization model, a CD0873-positive strain of C. difficile significantly outcompeted a CD0873-negative strain. Immunization of mice with recombinant CD0873 prevented long-term gut colonization and was correlated with a strong secretory IgA immune response. We further present high-resolution crystal structures of CD0873, at 1.80-2.50 Å resolutions, offering a first view of the ligand-binding pocket of CD0873 and provide evidence that this lipoprotein adhesin is part of a tyrosine import system, an amino acid key in C. difficile infection. These findings suggest that CD0873 could serve as a effective component in a vaccine against C. difficile

    On the connection between the number of nodal domains on quantum graphs and the stability of graph partitions

    Full text link
    Courant theorem provides an upper bound for the number of nodal domains of eigenfunctions of a wide class of Laplacian-type operators. In particular, it holds for generic eigenfunctions of quantum graph. The theorem stipulates that, after ordering the eigenvalues as a non decreasing sequence, the number of nodal domains νn\nu_n of the nn-th eigenfunction satisfies nνnn\ge \nu_n. Here, we provide a new interpretation for the Courant nodal deficiency dn=nνnd_n = n-\nu_n in the case of quantum graphs. It equals the Morse index --- at a critical point --- of an energy functional on a suitably defined space of graph partitions. Thus, the nodal deficiency assumes a previously unknown and profound meaning --- it is the number of unstable directions in the vicinity of the critical point corresponding to the nn-th eigenfunction. To demonstrate this connection, the space of graph partitions and the energy functional are defined and the corresponding critical partitions are studied in detail.Comment: 22 pages, 6 figure
    corecore