2,135 research outputs found
Cobalt base superalloy has outstanding properties up to 1478 K (2200 F)
Alloy VM-103 is especially promising for use in applications requiring short time exposure to very high temperatures. Its properties over broad range of temperatures are superior to those of comparable commercial wrought cobalt-base superalloys, L-605 and HS-188
Burst avalanches in solvable models of fibrous materials
We review limiting models for fracture in bundles of fibers, with
statistically distributed thresholds for breakdown of individual fibers. During
the breakdown process, avalanches consisting of simultaneous rupture of several
fibers occur, and the distribution of the magnitude of
such avalanches is the central characteristics in our analysis. For a bundle of
parallel fibers two limiting models of load sharing are studied and contrasted:
the global model in which the load carried by a bursting fiber is equally
distributed among the surviving members, and the local model in which the
nearest surviving neighbors take up the load. For the global model we
investigate in particular the conditions on the threshold distribution which
would lead to anomalous behavior, i.e. deviations from the asymptotics
, known to be the generic behavior. For the local
model no universal power-law asymptotics exists, but we show for a particular
threshold distribution how the avalanche distribution can nevertheless be
explicitly calculated in the large-bundle limit.Comment: 28 pages, RevTeX, 3 Postscript figure
Traveling Wave Fronts and Localized Traveling Wave Convection in Binary Fluid Mixtures
Nonlinear fronts between spatially extended traveling wave convection (TW)
and quiescent fluid and spatially localized traveling waves (LTWs) are
investigated in quantitative detail in the bistable regime of binary fluid
mixtures heated from below. A finite-difference method is used to solve the
full hydrodynamic field equations in a vertical cross section of the layer
perpendicular to the convection roll axes. Results are presented for
ethanol-water parameters with several strongly negative separation ratios where
TW solutions bifurcate subcritically. Fronts and LTWs are compared with each
other and similarities and differences are elucidated. Phase propagation out of
the quiescent fluid into the convective structure entails a unique selection of
the latter while fronts and interfaces where the phase moves into the quiescent
state behave differently. Interpretations of various experimental observations
are suggested.Comment: 46 pages, 11 figures. Accepted for publication in Phys. Rev.
Bounds for the time to failure of hierarchical systems of fracture
For years limited Monte Carlo simulations have led to the suspicion that the
time to failure of hierarchically organized load-transfer models of fracture is
non-zero for sets of infinite size. This fact could have a profound
significance in engineering practice and also in geophysics. Here, we develop
an exact algebraic iterative method to compute the successive time intervals
for individual breaking in systems of height in terms of the information
calculated in the previous height . As a byproduct of this method,
rigorous lower and higher bounds for the time to failure of very large systems
are easily obtained. The asymptotic behavior of the resulting lower bound leads
to the evidence that the above mentioned suspicion is actually true.Comment: Final version. To appear in Phys. Rev. E, Feb 199
Morphological characterization of shocked porous material
Morphological measures are introduced to probe the complex procedure of shock
wave reaction on porous material. They characterize the geometry and topology
of the pixelized map of a state variable like the temperature. Relevance of
them to thermodynamical properties of material is revealed and various
experimental conditions are simulated. Numerical results indicate that, the
shock wave reaction results in a complicated sequence of compressions and
rarefactions in porous material. The increasing rate of the total fractional
white area roughly gives the velocity of a compressive-wave-series.
When a velocity is mentioned, the corresponding threshold contour-level of
the state variable, like the temperature, should also be stated. When the
threshold contour-level increases, becomes smaller. The area increases
parabolically with time during the initial period. The curve goes
back to be linear in the following three cases: (i) when the porosity
approaches 1, (ii) when the initial shock becomes stronger, (iii) when the
contour-level approaches the minimum value of the state variable. The area with
high-temperature may continue to increase even after the early
compressive-waves have arrived at the downstream free surface and some
rarefactive-waves have come back into the target body. In the case of energetic
material ... (see the full text)Comment: 3 figures in JPG forma
Recommended from our members
Introduction to finite-difference methods for numerical fluid dynamics
This work is intended to be a beginner`s exercise book for the study of basic finite-difference techniques in computational fluid dynamics. It is written for a student level ranging from high-school senior to university senior. Equations are derived from basic principles using algebra. Some discussion of partial-differential equations is included, but knowledge of calculus is not essential. The student is expected, however, to have some familiarity with the FORTRAN computer language, as the syntax of the computer codes themselves is not discussed. Topics examined in this work include: one-dimensional heat flow, one-dimensional compressible fluid flow, two-dimensional compressible fluid flow, and two-dimensional incompressible fluid flow with additions of the equations of heat flow and the {Kappa}-{epsilon} model for turbulence transport. Emphasis is placed on numerical instabilities and methods by which they can be avoided, techniques that can be used to evaluate the accuracy of finite-difference approximations, and the writing of the finite-difference codes themselves. Concepts introduced in this work include: flux and conservation, implicit and explicit methods, Lagrangian and Eulerian methods, shocks and rarefactions, donor-cell and cell-centered advective fluxes, compressible and incompressible fluids, the Boussinesq approximation for heat flow, Cartesian tensor notation, the Boussinesq approximation for the Reynolds stress tensor, and the modeling of transport equations. A glossary is provided which defines these and other terms
Recommended from our members
Use of transport models for wildfire behavior simulations
Investigators have attempted to describe the behavior of wildfires for over fifty years. Current models for numerical description are mainly algebraic and based on statistical or empirical ideas. The authors have developed a transport model called FIRETEC. The use of transport formulations connects the propagation rates to the full conservation equations for energy, momentum, species concentrations, mass, and turbulence. In this paper, highlights of the model formulation and results are described. The goal of the FIRETEC model is to describe most probable average behavior of wildfires in a wide variety of conditions. FIRETEC represents the essence of the combination of many small-scale processes without resolving each process in complete detail
Recommended from our members
Proposal for computer investigation of LMFBR core meltdown accidents
The environmental consequences of an LMFBR accident involving breach of containment are so severe that such accidents must not be allowed to happen. Present methods for analyzing hypothetical core disruptive accidents like a loss of flow with failure to scram cannot show conclusively that such accidents do not lead to a rupture of the pressure vessel. A major deficiency of present methods is their inability to follow large motions of a molten LMFBR core. Such motions may lead to a secondary supercritical configuration with a subsequent energy release that is sufficient to rupture the pressure vessel. The Los Alamos Scientific Laboratory proposes to develop a computer program for describing the dynamics of hypothetical accidents. This computer program will utilize implicit Eulerian fluid dynamics methods coupled with a time-dependent transport theory description of the neutronic behavior. This program will be capable of following core motions until a stable coolable configuration is reached. Survey calculations of reactor accidents with a variety of initiating events will be performed for reactors under current design to assess the safety of such reactors. (auth
Recommended from our members
Stochastic interpenetration of fluids
We describe a spectral approach to the investigation of fluid instability, generalized turbulence, and the interpenetration of fluids across an interface. The technique also applies to a single fluid with large variations in density. Departures of fluctuating velocity components from the local mean are far subsonic, but the mean Mach number can be large. Validity of the description is demonstrated by comparisons with experiments on turbulent mixing due to the late stages of Rayleigh-Taylor instability, when the dynamics become approximately self-similar in response to a constant body force. Generic forms for anisotropic spectral structure are described and used as a basis for deriving spectrally integrated moment equations that can be incorporated into computer codes for scientific and engineering analyses
- …