24 research outputs found

    Consequences of maternal yolk testosterone for offspring development and survival : experimental test in a lizard

    Full text link
    1. Hormone-mediated maternal effects and developmental plasticity are important sources of phenotypic variation, with potential consequences for trait evolution. Yet our understanding of the importance of maternal hormones for offspring fitness in natural populations is very limited, particularly in non-avian species.2. We experimentally elevated yolk testosterone by injection of a physiological dose into eggs of the lizard Ctenophorus fordi Storr, to investigate its roles in offspring development, growth and survival.3. Yolk testosterone did not influence incubation period, basic hatchling morphology or survival under natural conditions. However, there was evidence for increased growth in hatchlings from testosterone-treated eggs, suggesting that maternal hormones have potential fitness consequences in natural populations.4. The positive effect of prenatal testosterone exposure on postnatal growth could represent a taxonomically widespread developmental mechanism that has evolved into an adaptive maternal effect in some taxa, but remains deleterious or selectively neutral in others.5. A broader taxonomic perspective should increase our understanding of the role of physiological constraints in the evolution of endocrine maternal effects.<br /

    Production and characterization of monoclonal antibodies against Campylobacter fetus subsp. venerealis

    No full text
    Myeloma cells Sp2/0-Ag14 and spleen cells from BALB/c mouse immunized with sonicated Campylobacter fetus subsp. venerealis NCTC 10354 were fused with polyethylene glycol (PEG) for the selection of clones producing antibodies. Clones were obtained by limiting dilution and screened for the production of specific antibodies to C. fetus subsp. venerealis NCTC 10354 by indirect ELISA and western blot against a panel of bacteria: C. fetus subsp. venerealis NCTC 10354, C. fetus subsp fetus ADRI 1812, C. sputorum biovar sputorum LMG 6647, C. lari NCTC 11352, and Arcobacter skirrowii LMG 6621 for the ELISA and C. fetus subsp. venerealis NCTC 10354 and C. sputorum biovar sputorum LMG 6647 for the western blotting. Fifteen clones producing monoclonal antibodies (MAbs) anti-C. fetus subsp. venerealis of the IgM (1) and IgG (14) classes were further screened for species-specificity. Four clones of the 15 obtained were producers of species-specific monoclonal antibodies (MAbs): two were specific for C. fetus subsp. venerealis and two were specific for C. fetus subsp. fetus. None of the clones were reactive against C. sputorum biovar sputorum LMG 6647. All clones recognized a protein with molecular mass of approximately 148 kDa from lysed C. fetus subsp. venerealis NCTC 10354
    corecore