5 research outputs found

    Role of Brain Angiotensin-II in Development of Experimental Diabetic Nephropathy in Wistar Rats

    Get PDF
    Abstract The renin-angiotensin-aldosterone system (RAAS) plays a key role in diabetic nephropathy (DN). Angiotensin-II secreted during the RAAS pathway increases nephropathy. It stimulates oxidative stress which can quench nitric oxide. Reduced nitric oxide level aggravates Ang-II-induced vasoconstriction. Ang-II has also emerged as a central mediator of the glomerular hemodynamic changes that are associated with renal injury. Deletion of ACE2 is also noted due to increased Ang-II level which leads to the development of DN. We hypothesize that nephropathy caused by Ang-II in the periphery may be controlled by brain RAAS. ACE inhibitors and ARBs may show the renoprotective effect when administered through ICV without crossing the blood-brain barrier. DN was observed after 8 weeks of diabetes induction through alloxan. Administration of captopril and valsartan once and in combined therapy for 2 weeks, significantly reduced urine output, blood urea nitrogen, total protein in the urine, serum cholesterol, serum creatinine, serum triglycerides, and kidney/body weight ratio as compared to diabetic control rats. Further, combination therapy significantly increased the body weight and serum nitrate level as compared to diabetic control animals. However, increased ACE2 levels in the brain may reduce the sympathetic outflow and might have decreased the peripheral activity of Ang-II which shows beneficial effects in DN

    Incidence of adverse drug reactions in human immune deficiency virus-positive patients using highly active antiretroviral therapy

    No full text
    To estimate the incidence of adverse drug reactions (ADRs) in Human immune deficiency virus (HIV) patients on highly active antiretroviral therapy (HAART). To identify the risk factors associated with ADRs in HIV patients. To analyze reported ADRs based on various parameters like causality, severity, predictability, and preventability. Retrospective case-control study. An 18-month retrospective case-control study of 208 patients newly registered in ART center, RIMS hospital, Kadapa, were intensively monitored for ADRs to HAART. Predictability was calculated based on the history of previous exposure to drug. Multivariate logistic regressions were used to identify the risk factors for ADRs. Data were analyzed using the chi-square test for estimating the correlation between ADRs and different variables. All statistical calculations were performed using EpiInfo version 3.5.3. Monitoring of 208 retrospective patients by active Pharmacovigilance identified 105 ADRs that were identified in 71 patients. Skin rash and anemia were the most commonly observed ADRs. The organ system commonly affected by ADR was skin and appendages (31.57%). The ADRs that were moderate were 90.14% of cases. The incidence of ADRs (53.52%) was higher with Zidovudine + Lamivudine + Nevirapine combination. CD4 cell count less than <250 cells/μl were 80.28%, male gender were observed to be the risk factors for ADRs. Our study finding showed that there is a need of active pharmaceutical care with intensive monitoring for ADRs in Indian HIV-positive patients who are illiterate, of male and female gender, with CD4 count ≤250 cells/mm3 with comorbid conditions

    Role of ACE 2 and Vitamin D: The Two Players in Global Fight against COVID-19 Pandemic

    No full text
    The global pandemic of coronavirus disease 2019 (COVID-19) has spread across the borders, gaining attention from both health care professional and researchers to understand the mode of entry and actions induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), its causative agent in the human body. The role of angiotensin-converting enzyme–2 (ACE2) in facilitating the entry of the virus in the host cell by binding to it is similar to SARS-CoV-1, the causative agent for severe acute respiratory syndrome (SARS) which emerged in 2003. Besides the role of ACE2 as a molecular target for the virus, the review displays the potential benefits of ACE2 enzyme and various agents that modify its activity in curbing the effects of the deadly virus, thus unfolding a dual character of ACE2 in the current pandemic. As evident by the differences in the susceptibility toward viral infection in children and geriatric population, it must be noted that the older population has limited ACE2 levels and greater infection risk, whereas the situation is reversed in the case of the pediatric population, demonstrating the defensive character of ACE2 in the latter, despite acting as receptor target for SARS-CoV-2. Also, the upregulation of ACE2 levels by estrogen has indicated greater resistance to infection in females than in the male human population. ACE2 is a carboxypeptidase, which degrades angiotensin II and counteracts its actions to protect against cardiovascular risks associated with the virus. Another contribution of this enzyme is supported by the role of circulating soluble ACE2, which acts as a receptor to bind the virus but does not mediate its actions, therefore blocking its interaction to membrane-bound ACE2 receptors. The review also shares the enhanced risks of developing COVID-19 infection by using ACE inhibitors and ARBs. However, both these agents have been reported to upregulate ACE2 levels; yet, adequate evidence regarding their role is quite inconsistent in human studies. Furthermore, the role of vitamin D has been highlighted in regulating the immune system of the body through renin-angiotensin-aldosterone system (RAAS) inhibition, by downregulating host cell receptor expression to prevent virus attachment. Besides, vitamin D also acts through several other mechanisms like upregulating antimicrobial peptides, fighting against the proinflammatory milieu created by the invading virus, and interfering with the viral replication cycle as well as calcitriol-mediated blockage of CREB protein. Hypovitaminosis D is attributed to elevated risks of acute respiratory distress syndrome (ARDS), lung damage, and cardiovascular disorders, further increasing the severity of COVID-19 infection

    Role of UPP pathway in amelioration of diabetes-associated complications

    No full text
    International audienceType 2 diabetes (T2D) is one of the most widely spread metabolic disorder also called as “life style” disease. Due to the alarmingnumber of patients, there is great need to therapies targeting functions which can help in maintaining the homeostasis of glucoselevels and improving insulin sensitivity. Detailed analysis was done through various research and review papers which wassearched using MEDLINE, BIOSIS, and EMBASE using various keywords. This search retrieved the most appropriate contenton these molecules targeting UPP pathway. From this extensive review involving UPP pathway, it was concluded that the role ofubiquitin’s is not only limited to neurodegenerative disorders but also plays a critical role in progression of diabetes includingobesity, insulin resistance, and various neurogenerative disorders but it also targets proteasomal degradation including mediationof cellular signaling pathways. Thus, drugs targeting UPP not only may show effect against diabetes but also are therapeuticallybeneficial in the treatment of diabetes-associated complications which may be obtained. Thus, based on the available informationand data on UPP functions, it can be concluded that regulation of UPP pathway via downstream regulators mainly E1, E2, and E3may bring promising results. Drugs targeting these transcriptional factors may emerge as a novel therapy in the treatment ofdiabetes and diabetes-associated complications
    corecore