67 research outputs found

    NH2-terminal Inactivation Peptide Binding to C-type–inactivated Kv Channels

    Get PDF
    In many voltage-gated K+ channels, N-type inactivation significantly accelerates the onset of C-type inactivation, but effects on recovery from inactivation are small or absent. We have exploited the Na+ permeability of C-type–inactivated K+ channels to characterize a strong interaction between the inactivation peptide of Kv1.4 and the C-type–inactivated state of Kv1.4 and Kv1.5. The presence of the Kv1.4 inactivation peptide results in a slower decay of the Na+ tail currents normally observed through C-type–inactivated channels, an effective blockade of the peak Na+ tail current, and also a delay of the peak tail current. These effects are mimicked by addition of quaternary ammonium ions to the pipette-filling solution. These observations support a common mechanism of action of the inactivation peptide and intracellular quaternary ammonium ions, and also demonstrate that the Kv channel inner vestibule is cytosolically exposed before and after the onset of C-type inactivation. We have also examined the process of N-type inactivation under conditions where C-type inactivation is removed, to compare the interaction of the inactivation peptide with open and C-type–inactivated channels. In C-type–deficient forms of Kv1.4 or Kv1.5 channels, the Kv1.4 inactivation ball behaves like an open channel blocker, and the resultant slowing of deactivation tail currents is considerably weaker than observed in C-type–inactivated channels. We present a kinetic model that duplicates the effects of the inactivation peptide on the slow Na+ tail of C-type–inactivated channels. Stable binding between the inactivation peptide and the C-type–inactivated state results in slower current decay, and a reduction of the Na+ tail current magnitude, due to slower transition of channels through the Na+-permeable states traversed during recovery from inactivation

    The Polyamine Binding Site in Inward Rectifier K+ Channels

    Get PDF
    Strongly inwardly rectifying potassium channels exhibit potent and steeply voltage-dependent block by intracellular polyamines. To locate the polyamine binding site, we have examined the effects of polyamine blockade on the rate of MTSEA modification of cysteine residues strategically substituted in the pore of a strongly rectifying Kir channel (Kir6.2[N160D]). Spermine only protected cysteines substituted at a deep location in the pore, between the “rectification controller” residue (N160D in Kir6.2, D172 in Kir2.1) and the selectivity filter, against MTSEA modification. In contrast, blockade with a longer synthetic polyamine (CGC-11179) also protected cysteines substituted at sites closer to the cytoplasmic entrance of the channel. Modification of a cysteine at the entrance to the inner cavity (169C) was unaffected by either spermine or CGC-11179, and spermine was clearly “locked” into the inner cavity (i.e., exhibited a dramatically slower exit rate) following modification of this residue. These data provide physical constraints on the spermine binding site, demonstrating that spermine stably binds at a deep site beyond the “rectification controller” residue, near the extracellular entrance to the channel

    The Polyamine Binding Site in Inward Rectifier K+ Channels

    Get PDF
    Strongly inwardly rectifying potassium channels exhibit potent and steeply voltage-dependent block by intracellular polyamines. To locate the polyamine binding site, we have examined the effects of polyamine blockade on the rate of MTSEA modification of cysteine residues strategically substituted in the pore of a strongly rectifying Kir channel (Kir6.2[N160D]). Spermine only protected cysteines substituted at a deep location in the pore, between the “rectification controller” residue (N160D in Kir6.2, D172 in Kir2.1) and the selectivity filter, against MTSEA modification. In contrast, blockade with a longer synthetic polyamine (CGC-11179) also protected cysteines substituted at sites closer to the cytoplasmic entrance of the channel. Modification of a cysteine at the entrance to the inner cavity (169C) was unaffected by either spermine or CGC-11179, and spermine was clearly “locked” into the inner cavity (i.e., exhibited a dramatically slower exit rate) following modification of this residue. These data provide physical constraints on the spermine binding site, demonstrating that spermine stably binds at a deep site beyond the “rectification controller” residue, near the extracellular entrance to the channel

    Rapid Induction of P/C-type Inactivation Is the Mechanism for Acid-induced K+ Current Inhibition

    Get PDF
    Extracellular acidification is known to decrease the conductance of many voltage-gated potassium channels. In the present study, we investigated the mechanism of H+o-induced current inhibition by taking advantage of Na+ permeation through inactivated channels. In hKv1.5, H+o inhibited open-state Na+ current with a similar potency to K+ current, but had little effect on the amplitude of inactivated-state Na+ current. In support of inactivation as the mechanism for the current reduction, Na+ current through noninactivating hKv1.5-R487V channels was not affected by [H+o]. At pH 6.4, channels were maximally inactivated as soon as sufficient time was given to allow activation, which suggested two possibilities for the mechanism of action of H+o. These were that inactivation of channels in early closed states occurred while hyperpolarized during exposure to acid pH (closed-state inactivation) and/or inactivation from the open state was greatly accelerated at low pH. The absence of outward Na+ currents but the maintained presence of slow Na+ tail currents, combined with changes in the Na+ tail current time course at pH 6.4, led us to favor the hypothesis that a reduction in the activation energy for the inactivation transition from the open state underlies the inhibition of hKv1.5 Na+ current at low pH

    The Role of the Cytoplasmic Pore in Inward Rectification of Kir2.1 Channels

    Get PDF
    Steeply voltage-dependent block by intracellular polyamines underlies the strong inward rectification properties of Kir2.1 and other Kir channels. Mutagenesis studies have identified several negatively charged pore-lining residues (D172, E224, and E299, in Kir2.1) in the inner cavity and cytoplasmic domain as determinants of the properties of spermine block. Recent crystallographic determination of the structure of the cytoplasmic domains of Kir2.1 identified additional negatively charged residues (D255 and D259) that influence inward rectification. In this study, we have characterized the kinetic and steady-state properties of spermine block in WT Kir2.1 and in mutations of the D255 residue (D255E, A, K, R). Despite minimal effects on steady-state blockade by spermine, D255 mutations have profound effects on the blocking kinetics, with D255A marginally, and D255R dramatically, slowing the rate of block. In addition, these mutations result in the appearance of a sustained current (in the presence of spermine) at depolarized voltages. These features are reproduced with a kinetic model consisting of a single open state, two sequentially linked blocked states, and a slow spermine permeation step, with residue D255 influencing the spermine affinity and rate of entry into the shallow blocked state. The data highlight a “long-pore” effect in Kir channels, and emphasize the importance of considering blocker permeation when assessing the effects of mutations on apparent blocker affinity

    Locale and chemistry of spermine binding in the archetypal inward rectifier Kir2.1

    Get PDF
    Polyamine block of inwardly rectifying potassium (Kir) channels underlies their steep voltage dependence observed in vivo. We have examined the potency, voltage dependence, and kinetics of spermine block in dimeric Kir2.1 constructs containing one nonreactive subunit and one cysteine-substituted subunit before and after modification by methanethiosulfonate (MTS) reagents. At position 169C (between the D172 “rectification controller” and the selectivity filter), modification by either 2-aminoethyl MTS (MTSEA) or 2-(trimethylammonium)ethyl MTS (MTSET) reduced the potency and voltage dependence of spermine block, consistent with this position overlapping the spermine binding site. At position 176C (between D172 and the M2 helix bundle crossing), modification by MTSEA also weakened spermine block. In contrast, MTSET modification of 176C dramatically slowed the kinetics of spermine unblock, with almost no effect on potency or voltage dependence. The data are consistent with MTSET modification of 176C introducing a localized barrier in the inner cavity, resulting in slower spermine entry into and exit from a “deep” binding site (likely between the D172 rectification controller and the selectivity filter), but leaving the spermine binding site mostly unaffected. These findings constrain the location of deep spermine binding that underlies steeply voltage-dependent block, and further suggest important chemical details of high affinity binding of spermine in Kir2.1 channels—the archetypal model of strong inward rectification
    corecore