2,417 research outputs found

    A Logging Operation on the Jicarilla Apache Reservation

    Get PDF
    It may be the fault of the teachers who taught us geography, or it may be our own fault, but most of us have entertained the idea that New Mexico is a barren treeless waste but quite the contrary is true, especially in the northern and western parts of the state. The original stand of timber was estimated at over eighteen billion feet, most of which was Western Yellow Pine

    On the Prediction of Extreme Ecological Events

    Get PDF
    Ecological studies often focus on average effects of environmental factors, but ecological dynamics may depend as much upon environmental extremes. Ecology would therefore benefit from the ability to predict the frequency and severity of extreme environmental events. Some extreme events (e.g., earthquakes) are simple events: either they happen or they don\u27t, and they are generally difficult to predict. In contrast, extreme ecological events are often compound events, resulting from the chance coincidence of run-of-the-mill factors. Here we present an environmental bootstrap method for resampling short-term environmental data (rolling the environmental dice) to calculate an ensemble of hypothetical time series that embodies how the physical environment could potentially play out differently. We use this ensemble in conjunction with mechanistic models of physiological processes to analyze the biological consequences of environmental extremes. Our resampling method provides details of these consequences that would be difficult to obtain otherwise, and our methodology can be applied to a wide variety of ecological systems. Here, we apply this approach to calculate return times for extreme hydrodynamic and thermal events on intertidal rocky shores. Our results demonstrate that the co-occurrence of normal events can indeed lead to environmental extremes, and that these extremes can cause disturbance. For example, the limpet Lottia gigantea and the mussel Mytilus californianus are co-dominant competitors for space on wave-swept rocky shores, but their response to extreme environmental events differ. Limpet mortality can vary drastically through time. Average yearly maximum body temperature of L. gigantea on horizontal surfaces is low, sufficient to kill fewer than 5% of individuals, but on rare occasions environmental factors align by chance to induce temperatures sufficient to kill \u3e99% of limpets. In contrast, mussels do not exhibit large temporal variation in the physical disturbance caused by breaking waves, and this difference in the pattern of disturbance may have ecological consequences for these competing species. The effect of environmental extremes is under added scrutiny as the frequency of extreme events increases in response to anthropogenically forced climate change. Our method can be used to discriminate between chance events and those caused by long-term shifts in climate

    Immunopathology of CD4+ T Cell-Mediated Autoimmune Responses to Central Nervous System Antigens: Role of IL-16

    Get PDF
    Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating and degenerative disease of the central nervous system (CNS). While etiology of the disease remains unknown, genetic susceptibility and autoimmune mechanisms in the initiation and progression of the disease have been strongly suggested. Experimental autoimmune encephalomyelitis (EAE) is commonly used to study immune regulation of MS. Infiltration by CD4+ T cells, through blood-brain barrier (BBB), precedes the onset and relapses of MS. CNS migration and homing patterns of T cells are tightly synchronized by astrocyte and microglia derived cytokines and chemokines. Autoimmune, CNS antigenreactive, infiltrating T cells produce and locally release cytokines including but not limited to IFNγ, IL-2, IL-6, IL-16, IL-17, TNFα, and chemokines including CCL2, CCL5 and CXCL10. Chemokine mediated chemotaxis is exclusive for activated cell state and most chemokines do not discriminate between distinct cell types. Conversely, a cytokine IL-16 is a CD4-specific cytokine-ligand and exclusively induces chemotaxis of CD4+T cells, by binding and signaling through CD4, regardless of T cell activation state. In this article we focus on CD4+ T cell-mediated autoimmune responses to CNS antigens because of their importance for immunopathology of MS and EAE. We focus on autoimmune responses to myelin oligodendrocyte glycoprotein (MOG) because of its relevance for immunopathology of MS. We emphasize a role of IL-16 in regulation of CD4+T cell mediated autoimmune responses to MOG in EAE and MS. While a role of IL-16 in regulation of other CD4+T cell mediated autoimmune diseases has been established, its role in regulation of MS remains to be determined. Emerging data from our laboratories have indicated that IL-16-mediated CD4+ T cell chemoattraction has a significant role in regulation of CD4+ T cell-mediated autoimmune responses to CNS antigens. We propose an important function of this cytokine in regulation of relapsing-remitting EAE

    Absence of the Rashba effect in undoped asymmetric quantum wells

    Full text link
    To an electron moving in free space an electric field appears as a magnetic field which interacts with and can reorient the electron spin. In semiconductor quantum wells this spin-orbit interaction seems to offer the possibility of gate-voltage control in spintronic devices but, as the electrons are subject to both ion-core and macroscopic structural potentials, this over-simple picture has lead to intense debate. For example, an externally applied field acting on the envelope of the electron wavefunction determined by the macroscopic potential, underestimates the experimentally observed spin-orbit field by many orders of magnitude while the Ehrenfest theorem suggests that it should actually be zero. Here we challenge, both experimentally and theoretically, the widely held belief that any inversion asymmetry of the macroscopic potential, not only electric field, will produce a significant spin-orbit field for electrons. This conclusion has far-reaching consequences for the design of spintronic devices while illuminating important fundamental physics.Comment: 7 pages, 5 fig

    Factors associated with severity of hepatic fibrosis in people with chronic hepatitis C infection

    Get PDF
    The document attached has been archived with permission from the editor of the Medical Journal of Australia. An external link to the publisher’s copy is included.OBJECTIVE: To determine factors associated with hepatic fibrosis development in people with chronic hepatitis C virus (HCV) infection. METHODS: As a requirement for access to interferon therapy through the S100 scheme in Australia, individual pretreatment demographic and clinical information was collected on 2986 patients from 61 hospital-based liver clinics from 1 October 1994 through 31 December 1996. Patients with both a hepatic fibrosis score and an estimated duration of HCV infection (910) were divided into 540 with no or minimal hepatic fibrosis (stage 0–1) and 370 with moderate to severe hepatic fibrosis (stage 2–3). Seven factors were examined: age at HCV infection, sex, ethnicity, source of infection, duration of infection, alcohol intake, and mean ALT level. A further analysis was performed for all 1135 patients with a hepatic fibrosis score disregarding age at and duration of HCV infection. RESULTS: In multivariate analysis, four factors were significantly associated with moderate to severe hepatic fibrosis: age at infection (OR, 2.33 for age 31–40 years, 5.27 for age > 40 years, and 0.20 for age 30 years, compared with 3 times, compared with 1.5–2 times the upper limit of normal). In the analysis disregarding age at HCV infection and duration of HCV infection, older age was strongly associated with moderate to severe hepatic fibrosis (OR, 2.32 for age 36–40 years, 2.46 for age 41–50 years, 7.87 for age 51–60 years, and 7.15 for age > 60 years, compared with 16–30 years). There was no association in either analysis with sex or source of HCV infection. CONCLUSION: These factors may assist in targeting patients for both liver biopsy-based investigation and therapeutic intervention.Mark Danta, Gregory J Dore, Lisa Hennessy, Yueming Li, Chris R Vickers, Hugh Harley, Meng Ngu, William Reed, Paul V Desmond, William Sievert, Geoff C Farrell, John M Kaldor and Robert G Bate

    Bose-Einstein condensation of deconfined spinons in two dimensions

    Full text link
    The transition between the Néel antiferromagnet and the valence-bond solid state in two dimensions has become a paradigmatic example of deconfined quantum criticality, a non-Landau transition characterized by fractionalized excitations (spinons). We consider an extension of this scenario whereby the deconfined spinons are subject to a magnetic field. The primary purpose is to identify the exotic scenario of a Bose-Einstein condensate of spinons. We employ quantum Monte Carlo simulations of the J−Q model with a magnetic field, and we perform a quantum field theoretic analysis of the magnetic field and temperature dependence of thermodynamic quantities. The combined analysis provides evidence for Bose-Einstein condensation of spinons and also demonstrates an extended temperature regime in which the system is best described as a gas of spinons interacting with an emergent gauge field.Accepted manuscrip

    Extra-Zodiacal-Cloud Astronomy via Solar Electric Propulsion

    Get PDF
    Solar electric propulsion (SEP) is often considered as primary propulsion for robotic planetary missions, providing the opportunity to deliver more payload mass to difficult, high-delta-velocity destinations. However, SEP application to astrophysics has not been well studied. This research identifies and assesses a new application of SEP as primary propulsion for low-cost high-performance robotic astrophysics missions. The performance of an optical/infrared space observatory in Earth orbit or at the Sun-Earth L2 point (SEL2) is limited by background emission from the Zodiacal dust cloud that has a disk morphology along the ecliptic plane. By delivering an observatory to a inclined heliocentric orbit, most of this background emission can be avoided, resulting in a very substantial increase in science performance. This advantage enabled by SEP allows a small-aperture telescope to rival the performance of much larger telescopes located at SEL2. In this paper, we describe a novel mission architecture in which SEP technology is used to enable unprecedented telescope sensitivity performance per unit collecting area. This extra-zodiacal mission architecture will enable a new class of high-performance, short-development time, Explorer missions whose sensitivity and survey speed can rival flagship-class SEL2 facilities, thus providing new programmatic flexibility for NASA's astronomy mission portfolio. A mission concept study was conducted to evaluate this application of SEP. Trajectory analyses determined that a 700 kg-class science payload could be delivered in just over 2 years to a 2 AU mission orbit inclined 15 to the ecliptic using a 13 kW-class NASA's Evolutionary Xenon Thruster (NEXT) SEP system. A mission architecture trade resulted in a SEP stage architecture, in which the science spacecraft separates from the stage after delivery to the mission orbit. The SEP stage and science spacecraft concepts were defined in collaborative engineering environment studies. The SEP stage architecture approach offers benefits beyond a single astrophysics mission. A variety of low-cost astrophysics missions could employ a standard SEP stage to achieve substantial science benefit. This paper describes the results of this study in detail, including trajectory analysis, spacecraft concept definition, description of telescope/instrument benefits, and application of the resulting SEP stage to other missions. In addition, the benefits of cooperative development and use of the SEP stage, in conjunction with a SEP flight demonstration mission currently in definition at NASA, are considered

    Breakthrough Capability for UVOIR Space Astronomy: Reaching the Darkest Sky

    Get PDF
    We describe how availability of new solar electric propulsion (SEP) technology can substantially increase the science capability of space astronomy missions working within the near-UV to far-infrared (UVOIR) spectrum by making dark sky orbits accessible for the first time. We present two case studies in which SEP is used to enable a 700 kg Explorer-class and 7000 kg flagship-class observatory payload to reach an orbit beyond where the zodiacal dust limits observatory sensitivity. The resulting scientific performance advantage relative to a Sun-Earth L2 point (SEL2) orbit is presented and discussed. We find that making SEP available to astrophysics Explorers can enable this small payload program to rival the science performance of much larger long development-time systems. Similarly, we find that astrophysics utilization of high power SEP being developed for the Asteroid Redirect Robotics Mission (ARRM) can have a substantial impact on the sensitivity performance of heavier flagship-class astrophysics payloads such as the UVOIR successor to the James Webb Space Telescope
    corecore