15 research outputs found

    Antioxidants and Polyphenols: Concentrations and Relation to Male Infertility and Treatment Success

    Get PDF
    Oxidative stress is induced by reactive oxygen substances (ROS) that are known to affect male fertility. The aims of this study were to prospectively investigate and characterize total antioxidant and specifically polyphenols concentrations and their relations to sperm quality and fertility treatment success. During their infertility treatment, sixty-seven males were prospectively recruited to this study. After separation of the sperm from the semen sample, the semen fluid samples antioxidants and polyphenols concentrations were determined. Antioxidant concentration was significantly associated with sperm concentration and total motile count. Antioxidants concentration in the group of male with sperm concentration ≥ 15 × 106 was significantly higher than in the group of male with antioxidants concentration < 15 × 106 (830.3 ± 350 μM and 268.3 ± 220 μM, resp., p<0.001). Polyphenols concentration did not differ between the groups of sperm concentration above and below 15 × 106 (178.7 ± 121 μM and 161.7 ± 61 μM, resp., p-NS). No difference was found between fertilization rates and antioxidants or polyphenols concentrations. This is the first study that reports on polyphenols concentration within semen fluid. More studies are needed in order to investigate polyphenols role in male fertility

    Male Oxidative Stress Infertility (MOSI): Proposed Terminology and Clinical Practice Guidelines for Management of Idiopathic Male Infertility

    Get PDF
    Despite advances in the field of male reproductive health, idiopathic male infertility, in which a man has altered semen characteristics without an identifiable cause and there is no female factor infertility, remains a challenging condition to diagnose and manage. Increasing evidence suggests that oxidative stress (OS) plays an independent role in the etiology of male infertility, with 30% to 80% of infertile men having elevated seminal reactive oxygen species levels. OS can negatively affect fertility via a number of pathways, including interference with capacitation and possible damage to sperm membrane and DNA, which may impair the sperm’s potential to fertilize an egg and develop into a healthy embryo. Adequate evaluation of male reproductive potential should therefore include an assessment of sperm OS. We propose the term Male Oxidative Stress Infertility, or MOSI, as a novel descriptor for infertile men with abnormal semen characteristics and OS, including many patients who were previously classified as having idiopathic male infertility. Oxidation-reduction potential (ORP) can be a useful clinical biomarker for the classification of MOSI, as it takes into account the levels of both oxidants and reductants (antioxidants). Current treatment protocols for OS, including the use of antioxidants, are not evidence-based and have the potential for complications and increased healthcare-related expenditures. Utilizing an easy, reproducible, and cost-effective test to measure ORP may provide a more targeted, reliable approach for administering antioxidant therapy while minimizing the risk of antioxidant overdose. With the increasing awareness and understanding of MOSI as a distinct male infertility diagnosis, future research endeavors can facilitate the development of evidence-based treatments that target its underlying cause

    Effect of varicocele on semen characteristics according to the new 2010 World Health Organization criteria: a systematic review and meta-analysis

    No full text
    This study investigated the effects of varicocele on semen parameters in infertile men based on the new 2010 World Health Organization laboratory manual for the examination of human semen. Semen analysis results (volume, sperm count, motility, and morphology) were the primary outcomes. An electronic search to collect the data was conducted using the Medline/PubMed, SJU discover, and Google Scholar databases. We searched articles published from 2010 to August 2015, i.e., after the publication of the 2010 WHO manual. We included only those studies that reported the actual semen parameters of adult infertile men diagnosed with clinical varicocele and contained a control group of either fertile men or normozoospermic men who were not diagnosed with varicocele. Ten studies were included in the meta-analysis, involving 1232 men. Varicocele was associated with reduced sperm count (mean difference: −44.48 × 10 [6] ml−1 ; 95% CI: −61.45, −27.51 × 10 [6] ml−1 ; P < 0.001), motility (mean difference: −26.67%; 95% CI: −34.27, −19.08; P < 0.001), and morphology (mean difference: −19.68%; 95% CI: −29.28, −10.07; P < 0.001) but not semen volume (mean difference: −0.23 ml; 95% CI: −0.64, 0.17). Subgroup analyses indicated that the magnitude of effect was influenced by control subtype but not WHO laboratory manual edition used for semen assessment. We conclude that varicocele is a significant risk factor that negatively affects semen quality, but the observed pooled effect size on semen parameters does not seem to be affected by the WHO laboratory manual edition. Given most of the studies published after 2010 still utilized the 1999 manual for semen analysis, further research is required to fully understand the clinical implication of the 2010 WHO laboratory manual on the association between varicocele and semen parameters

    Bibliometrics: tracking research impact by selecting the appropriate metrics

    Get PDF
    Traditionally, the success of a researcher is assessed by the number of publications he or she publishes in peer-reviewed, indexed, high impact journals. This essential yardstick, often referred to as the impact of a specific researcher, is assessed through the use of various metrics. While researchers may be acquainted with such matrices, many do not know how to use them to enhance their careers. In addition to these metrics, a number of other factors should be taken into consideration to objectively evaluate a scientist′s profile as a researcher and academician. Moreover, each metric has its own limitations that need to be considered when selecting an appropriate metric for evaluation. This paper provides a broad overview of the wide array of metrics currently in use in academia and research. Popular metrics are discussed and defined, including traditional metrics and article-level metrics, some of which are applied to researchers for a greater understanding of a particular concept, including varicocele that is the thematic area of this Special Issue of Asian Journal of Andrology. We recommend the combined use of quantitative and qualitative evaluation using judiciously selected metrics for a more objective assessment of scholarly output and research impact
    corecore