45 research outputs found

    A dynamic ion cooling technique for FTICR mass spectrometry

    Get PDF
    AbstractA fast dynamic ion cooling technique based upon the adiabatic invariant phenomenon for Fourier transform ion cyclotron resonance mass spectrometry (FTICR) is presented. The method cools ions in the FTICR trap more efficiently, within a few hundred milliseconds without the use of a buffer gas, and results in a substantial signal enhancement. All performance aspects of the FTICR spectrum, e.g., peak intensities, mass resolution, and mass accuracy, improve significantly compared with cooling based on ion–ion interactions. The method may be useful in biological applications of FTICR, such as in proteomic studies involving extended on-line liquid chromatography (LC) separations, in which both the duty cycle and mass accuracy are crucially important

    Increased proteome coverage for quantitative peptide abundance measurements based upon high performance separations and DREAMS FTICR mass spectrometry

    Get PDF
    AbstractA primary challenge in proteome measurements is to be able to detect, identify, and quantify the extremely complex mixtures of proteins. The relative abundances of interest span at least six orders of magnitude for mammalian proteomes, and this constitutes an intractable challenge for high throughput proteome studies. We have recently described a new approach, Dynamic Range Enhancement Applied to Mass Spectrometry (DREAMS), which is based upon the selective ejection of the most abundant species to expand the dynamic range of Fourier transform ion cyclotron resonanace (FTICR) measurements. The basis of our approach is on-the-fly data-dependent selective ejection of highly abundant species, followed by prolonged accumulation of remaining low-abundance species in a quadrupole external to the FTICR ion trap. Here we report the initial implementation of this approach with high efficiency capillary reverse phase LC separations and high magnetic field electrospray ionization FTICR mass spectrometry for obtaining enhanced coverage in quantitative measurements for mammalian proteomes. We describe the analysis of a sample derived from a tryptic digest of proteins from mouse B16 cells cultured in both natural isotopic abundance and 15N-labeled media. The FTICR mass spectrometric analysis allows the assignment of peptide pairs (corresponding to the two distinctive versions of each peptide), and thus provides the basis for quantiative measurements when one of the two proteomes in the mixture is perturbed or altered in some fashion. We show that implementation of the DREAMS approach allows assignment of approximately 80% more peptide pairs, thus providing quantitative information for approximately 18,000 peptide pairs in a single analysis

    Advances in structure elucidation of small molecules using mass spectrometry

    Get PDF
    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules

    Applications of Mass Spectrometry to Lipids and Membranes

    No full text

    Applications of mass spectrometry to lipids and membranes.

    No full text
    Lipidomics, a major part of metabolomics, constitutes the detailed analysis and global characterization, both spatial and temporal, of the structure and function of lipids (the lipidome) within a living system. As with proteomics, mass spectrometry has earned a central analytical role in lipidomics, and this role will continue to grow with technological developments. Currently, there exist two mass spectrometry-based lipidomics approaches, one based on a division of lipids into categories and classes prior to analysis, the "comprehensive lipidomics analysis by separation simplification" (CLASS), and the other in which all lipid species are analyzed together without prior separation, shotgun. In exploring the lipidome of various living systems, novel lipids are being discovered, and mass spectrometry is helping characterize their chemical structure. Deuterium exchange mass spectrometry (DXMS) is being used to investigate the association of lipids and membranes with proteins and enzymes, and imaging mass spectrometry (IMS) is being applied to the in situ analysis of lipids in tissues
    corecore