971 research outputs found

    Charge dynamics in two-electron quantum dots

    Full text link
    We investigate charge dynamics in a two-electron double quantum dot. The quantum dot is manipulated by using a time-dependent external voltage that induces charge oscillations between the dots. We study the dependence of the charge dynamics on the external magnetic field and on the periodicity of the external potential. We find that for suitable parameter values, it is possible to induce both one-electron and two-electron oscillations between the dots.Comment: 4 pages, 7 figures, proceedings of the Quantum Dot 2010 conferenc

    On the stability of non-isothermal Bonnor-Ebert spheres. II. The effect of gas temperature on the stability

    Full text link
    Aims. We investigate the stability of non-isothermal Bonnor-Ebert spheres with a model that includes a self-consistent calculation of the gas temperature. This way we can discard the assumption of equality between the dust and gas temperatures, and study the stability as the gas temperature changes with chemical evolution of the gas. Methods. We use a gas-grain chemical model including a time-dependent treatment of depletion onto grain surfaces, which strongly influences the gas temperature as the main coolant, CO, depletes from the gas. Dust and gas temperatures are solved with radiative transfer. For comparison with previous work, we assume that the cores are deeply embedded in a larger external structure, corresponding to visual extinction AVext=10A_{\rm V}^{\rm ext}=10 mag. Results. We find that the critical non-dimensional radius ξ1\xi_1 derived here is similar to our previous work where we assumed Tdust=TgasT_{\rm dust}=T_{\rm gas}; the ξ1\xi_1 values lie below the isothermal critical value ξ0∼6.45\xi_0\sim6.45, but the difference is less than 10%. Chemical evolution does not affect notably the stability condition of low-mass cores (<0.75 M⊙M_\odot). For higher masses the decrease of cooling owing to CO depletion causes substantial temporal changes in the temperature and density profiles of the cores. In the mass range 1-2 M⊙M_\odot , ξ1\xi_1 decreases with chemical evolution, whereas above 3 M⊙M_\odot , ξ1\xi_1 instead increases. We also find that decreasing AVextA_{\rm V}^{\rm ext} increases the gas temperature especially when the gas is chemically old, causing ξ1\xi_1 to increase with respect to models with higher AVextA_{\rm V}^{\rm ext}. The derived ξ1\xi_1 values are close to ξ0\xi_0. The density contrast between the core center and edge varies between 8 to 16 depending on core mass and the chemical age of the gas, compared to the constant value ∼\sim 14.1 for the isothermal BES.Comment: 7 pages, 5 figures; accepted for publication in A&A; abstract (heavily) abridged for arXi
    • …
    corecore