7 research outputs found

    Free-space quasi-phase matching

    Full text link
    We report a new approach to phase matching of nonlinear materials based on the free space multipass cells. This concept quasi-phase matches crystalline quartz and increases the second harmonic generation efficiency by a factor 40

    Direct refractive index retrieval from interferometry measurements

    No full text
    We present an alternative numerical method to the Abel inversion technique, which can be applied to complex non-symmetrical systems. A comparison with the Abel inversion algorithm was conducted. For benchmarking, the method was applied to a synthetic trace representing a plasma waveguide characterized by a constant parabolic density profile. Furthermore, the temperature and refractive index of a plume of hot air surrounding a non-cylindrical soldering iron were retrieved. Temperatures between 50 °C and 200 °C were successfully retrieved within the instrument precision. The proposed method allows robust and fast data retrieval while maintaining the accuracy and resolution of well-known methods, as Abel inversion

    Optimization and Characterization of High-Harmonic Generation for Probing Solid Density Plasmas

    Get PDF
    International audienceThe creation of high energy density plasma states produced during laser-solid interaction on a sub-picosecond timescale opens a way to create astrophysical plasmas in the lab to investigate their properties, such as the frequency-dependent refractive index. Available probes to measure absorption and phase-changes given by the complex refractive index of the plasma state are extreme-UV (EUV) and soft X-ray (XUV) ultra-short pulses from high harmonic generation (HHG). For demanding imaging applications such as single-shot measurements of solid density plasmas, the HHG probe has to be optimized in photon number and characterized in intensity and wavefront stability from shot-to-shot. In an experiment, a coherent EUV source based on HHG driven by a compact diode-pumped laser is optimized in photons per pulse for argon and xenon, and the shot-to-shot intensity stability and wavefront changes are characterized. The experimental results are compared to an analytical model estimating the HHG yield, showing good agreement. The obtained values are compared to available data for solid density plasmas to confirm the feasibility of HHG as a probe
    corecore