11 research outputs found

    What do medical students actually need to know about artificial intelligence?

    No full text
    With emerging innovations in artificial intelligence (AI) poised to substantially impact medical practice, interest in training current and future physicians about the technology is growing. Alongside comes the question of what, precisely, should medical students be taught. While competencies for the clinical usage of AI are broadly similar to those for any other novel technology, there are qualitative differences of critical importance to concerns regarding explainability, health equity, and data security. Drawing on experiences at the University of Toronto Faculty of Medicine and MIT Critical Data's "datathons", the authors advocate for a dual-focused approach: combining robust data science-focused additions to baseline health research curricula and extracurricular programs to cultivate leadership in this space

    Predicting hospitalisations related to ambulatory care sensitive conditions with machine learning for population health planning: derivation and validation cohort study

    No full text
    Objective: To predict older adults’ risk of avoidable hospitalisation related to ambulatory care sensitive conditions (ACSC) using machine learning applied to administrative health data of Ontario, Canada. Design, setting and participants: A retrospective cohort study was conducted on a large cohort of all residents covered under a single-payer system in Ontario, Canada over the period of 10 years (2008– 2017). The study included 1.85 million Ontario residents between 65 and 74 years old at any time throughout the study period. Data sources: Administrative health data from Ontario, Canada obtained from the (ICES formerly known as the Institute for Clinical Evaluative Sciences Data Repository. Main outcome measures: Risk of hospitalisations due to ACSCs 1 year after the observation period. Results: The study used a total of 1 854 116 patients, split into train, validation and test sets. The ACSC incidence rates among the data points were 1.1% for all sets. The final XGBoost model achieved an area under the receiver operating curve of 80.5% and an area under precision–recall curve of 0.093 on the test set, and the predictions were well calibrated, including in key subgroups. When ranking the model predictions, those at the top 5% of risk as predicted by the model captured 37.4% of those presented with an ACSC-related hospitalisation. A variety of features such as the previous number of ambulatory care visits, presence of ACSC-related hospitalisations during the observation window, age, rural residence and prescription of certain medications were contributors to the prediction. Our model was also able to capture the geospatial heterogeneity of ACSC risk in Ontario, and especially the elevated risk in rural and marginalised regions. Conclusions: This study aimed to predict the 1-year risk of hospitalisation from ambulatory-care sensitive conditions in seniors aged 65–74 years old with a single, large-scale machine learning model. The model shows the potential to inform population health planning and interventions to reduce the burden of ACSC-related hospitalisations.Published versionThis study was supported by ICES, which is funded by an annual grant from the Ontario Ministry of Health (MOH) and the Ministry of Long-Term Care (MLTC). This work was supported by the New Frontiers in Research Fund (NFRFE2018-00662), a Canada Research Chair in Population Health Analytics (950- 230702) (LR), Ontario Graduate Scholarship (number N/A) (VH), Canadian Institutes of Health Research Banting and Best Canada Graduate Scholarship Master’s and Doctoral awards (numbers N/A) (VH), and Vector Institute Post-graduate Fellowship (number N/A) (VH)

    Governing partnerships with technology companies as part of the COVID-19 response in Canada: A qualitative case study.

    No full text
    Cross-sector partnerships are vital for maintaining resilient health systems; however, few studies have sought to empirically assess the barriers and enablers of effective and responsible partnerships during public health emergencies. Through a qualitative, multiple case study, we analyzed 210 documents and conducted 26 interviews with stakeholders in three real-world partnerships between Canadian health organizations and private technology startups during the COVID-19 pandemic. The three partnerships involved: 1) deploying a virtual care platform to care for COVID-19 patients at one hospital, 2) deploying a secure messaging platform for physicians at another hospital, and 3) using data science to support a public health organization. Our results demonstrate that a public health emergency created time and resource pressures throughout a partnership. Given these constraints, early and sustained alignment on the core problem was critical for success. Moreover, governance processes designed for normal operations, such as procurement, were triaged and streamlined. Social learning, or the process of learning from observing others, offset some time and resource pressures. Social learning took many forms ranging from informal conversations between individuals at peer organisations (e.g., hospital chief information officers) to standing meetings at the local university's city-wide COVID-19 response table. We also found that startups' flexibility and understanding of the local context enabled them to play a highly valuable role in emergency response. However, pandemic fueled "hypergrowth" created risks for startups, such as introducing opportunities for deviation away from their core value proposition. Finally, we found each partnership navigated intense workloads, burnout, and personnel turnover through the pandemic. Strong partnerships required healthy, motivated teams. Visibility into and engagement in partnership governance, belief in partnership impact, and strong emotional intelligence in managers promoted team well-being. Taken together, these findings can help to bridge the theory-to-practice gap and guide effective cross-sector partnerships during public health emergencies

    Geographic clustering of travel-acquired infections in Ontario, Canada, 2008-2020.

    No full text
    As the frequency of international travel increases, more individuals are at risk of travel-acquired infections (TAIs). In this ecological study of over 170,000 unique tests from Public Health Ontario's laboratory, we reviewed all laboratory-reported cases of malaria, dengue, chikungunya, and enteric fever in Ontario, Canada between 2008-2020 to identify high-resolution geographical clusters for potential targeted pre-travel prevention. Smoothed standardized incidence ratios (SIRs) and 95% posterior credible intervals (CIs) were estimated using a spatial Bayesian hierarchical model. High- and low-incidence areas were described using data from the 2016 Census based on the home forward sortation area of patients testing positive. A second model was used to estimate the association between drivetime to the nearest travel clinic and incidence of TAI within high-incidence areas. There were 6,114 microbiologically confirmed TAIs across Ontario over the study period. There was spatial clustering of TAIs (Moran's I = 0.59, p<0.0001). Compared to low-incidence areas, high-incidence areas had higher proportions of immigrants (p<0.0001), were lower income (p = 0.0027), had higher levels of university education (p<0.0001), and less knowledge of English/French languages (p<0.0001). In the high-incidence Greater Toronto Area (GTA), each minute increase in drive time to the closest travel clinic was associated with a 3% reduction in TAI incidence (95% CI 1-6%). While urban neighbourhoods in the GTA had the highest burden of TAIs, geographic proximity to a travel clinic in the GTA was not associated with an area-level incidence reduction in TAI. This suggests other barriers to seeking and adhering to pre-travel advice

    Mapping the six higher-order principles of adaptive governance by systemic oversight (Blasimme and Vayena, JMLE 2018) to key events or concepts in the three cases of study.

    No full text
    Mapping the six higher-order principles of adaptive governance by systemic oversight (Blasimme and Vayena, JMLE 2018) to key events or concepts in the three cases of study.</p

    S1 File -

    No full text
    Appendix A–Anonymized Search Terms. Appendix B–Consent Form. Appendix C–Semi-structured Interview Guide. Appendix D–Coding Guide. (PDF)</p

    Summary of documents obtained.

    No full text
    Pie charts of document type (A) and source (B) from document review, n = 210.</p
    corecore