669 research outputs found

    Kekkon5 is an extracellular regulator of BMP signaling

    Get PDF
    AbstractPrecise spatial and temporal control of Drosophila Bone Morphogenetic Protein (BMP) signaling is achieved by a host of extracellular factors that modulate ligand distribution and activity. Here we describe Kekkon5 (Kek5), a transmembrane protein containing leucine-rich repeats (LRRs), as a novel regulator of BMP signaling in Drosophila. We find that loss or gain of kek5 disrupts crossvein development and alters the early profile of phosphorylated Mad and dSRF in presumptive crossvein cells. kek5 phenotypic effects closely mimic those observed with Short gastrulation (Sog), but do not completely recapitulate the effects of dominant negative BMP receptors. We further demonstrate that Kek5 is able to antagonize the BMP ligand Glass bottom boat (Gbb) and that the Kek5 LRRs are required for BMP inhibitory activity, while the Ig domain is dispensable in this context. Our identification of Kek5 as a modulator of BMP signaling supports the emerging notion that LIG proteins function as diverse regulators of cellular communication

    Development of Zein-Pectin Nanoparticle as Drug carrier

    Get PDF
    Recent years have witnessed tremendous growth of nanotechnology based drug delivery system which reduces drug toxicity and side effects and increases the therapeutic index of the drug. Aim of the study is to develop a biodegradable, non-toxic nanoparticle, solely from natural polymers. Zein – pectin nanoparticle comprising of a hydrophobic zein core and a hydrophilic pectin shell was developed by ultrasonication method. SEM images confirm the nanosize of the nanoparticle. UV- Visible and FT-IR spectroscopic results confirm the incorporation of zein, pectin and the encapsulation of the model drug quercetin in the nanoparticle. Zein is a prolamine class of protein found in wheat, maize etc and pectin is a polymer of galacturonic acid units found in plant cell wal

    Angiopoietin-like protein 3, an emerging cardiometabolic therapy target with systemic and cell-autonomous functions

    Get PDF
    Angiopoietin like protein 3 (ANGPTL3) is best known for its function as an inhibitor of lipoprotein and endothelial lipases. Due to the capacity of genetic or pharmacologic ANGPTL3 suppression to markedly reduce circulating lipoproteins, and the documented cardioprotection upon such suppression, ANGPTL3 has become an emerging therapy target for which both antibody and antisense oligonucleotide (ASO) therapeutics are being clinically tested. While the antibody is relatively selective for circulating ANGPTL3, the ASO also depletes the intra-hepatocellular protein, and there is emerging evidence for cell-autonomous functions of ANGPTL3 in the liver. These include regulation of hepatocyte glucose and fatty acid uptake, insulin sensitivity, LDL/VLDL remnant uptake, VLDL assembly/secretion, polyunsaturated fatty acid (PUFA) and PUFA-derived lipid mediator content, and gene expression. In this review we elaborate on (i) why ANGPTL3 is considered one of the most promising new cardiometabolic therapy targets, and (ii) the present evidences for its intra-hepatocellular or cell-autonomous functions.Peer reviewe

    Angiopoietin-like 8 (Angptl8) controls adipocyte lipolysis and phospholipid composition

    Get PDF
    Angiopoietin-like 8 (Angptl8) inhibits lipolysis in the circulation together with Angplt3 and controls post-prandial fat storage in white adipose tissue (WAT). It is strongly induced by insulin in vivo in WAT and in vitro in adipocytes. In this study we addressed the function of Angptl8 in adipocytes by its stable lentivirus-mediated knock-down in 3T3-L1 cells, followed by analyses of triglyceride (TG) storage, lipid droplet (LD) morphology, the cellular lipidome, lipolysis, and gene expression. Depletion of Angptl8 did not drastically affect the adipocyte differentiation of 3T3-L1 cells but resulted in a moderate (18-19%) reduction of stored TGs. The lipidome analysis revealed a reduction of alkyl-phosphatidylcholines (PCs) and phosphatidylethanolamine (PE) plasmalogens, as well as saturated PCs and PEs. Importantly, the Angptl8 depleted cells displayed enhanced lipolysis as measured by release of non-esterified fatty acids (NEFA5). Consistently, mRNAs encoding Angptl4 and Leptin, which facilitate lipolysis, as well as Cpt1a, Cpt1b, and Pgc-1 alpha involved in FA oxidation, were elevated. The Angptl8 mRNA itself was suppressed by pharmacologic treatments inducing lipolysis: stimulation with the beta-adrenergic agonist isoproterenol or with the adenylate cyclase activator forskolin. To conclude, knock-down of Angptl8 in adipocytes suggests that the protein acts to inhibit intracellular lipolysis, analogous to its activity in the circulation. Depletion of Angptl8 results in an altered cellular phospholipid composition. The findings identify Angptl8 as a central insulin-regulated controller of adipocyte lipid metabolism. (C) 2017 Elsevier B.V. All rights reserved.Peer reviewe

    MiR-107 inhibits CDK6 expression, differentiation, and lipid storage in human adipocytes

    Get PDF
    MicroRNA-107 (miR-107) plays a regulatory role in obesity and insulin resistance, but the mechanisms of its function in adipocytes have not been elucidated in detail. Here we show that overexpression of miR-107 in pre- and mature human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes attenuates differentiation and lipid accumulation. Our results suggest that miR-107 controls adipocyte differentiation via CDK6 and Notch signaling. CDK6 is a validated target of miR-107 and was downregulated upon miR-107 overexpression. Notch3, a signaling receptor involved in adipocyte differentiation, has been shown to decrease upon CDK6 depletion; Here Notch3 and its target Hes1 were downregulated by miR-107 overexpression. In mature adipocytes, miR-107 induces a triglyceride storage defect by impairing glucose uptake and triglyceride synthesis. To conclude, our data suggests that miR-107 has distinct functional roles in preadipocytes and mature adipocytes; Its elevated expression at these different stages of adipocytes may on one hand dampen adipogenesis, and on the other, promote ectopic fatty acid accumulation and reduced glucose tolerance.Peer reviewe

    Mathematical Modelling of the Relationship between Two Different Temperament Classifications: During the Covid-19 Pandemic

    Get PDF
    In medicine, it is well known that healthy individuals have different physical and mental characteristics. Ancient Indian medicine, Ayurveda and the Persian-Arabic traditional Unani medicine has two distinct approaches for the classification of human subjects according to their temperaments. The individual temperament is an important foundation for personalized medicine, which can help in the prevention and treatment of many diseases including COVID-19. This paper attempts to explore the relationship of the utmost important concepts of these systems called individual temperament named as Prakruti in Ayurveda and Mizaj in Unani practice using mathematical modelling. The results of mathematical modelling can be adopted expediently for the development of algorithms that can be applied in medical informatics. For this, a significant literature review has been carried out. Based on the previous researchers' reviews the essential parameters have been identified for making the relationship and hypothesis were framed. The mathematical modelling was adopted to propose the existence of the relationship between the parameters of such an ancient and rich medicine systems. The hypotheses are validated through the mathematic driven model. Doi: 10.28991/esj-2021-01258 Full Text: PD

    Avicin D, a Plant Triterpenoid, Induces Cell Apoptosis by Recruitment of Fas and Downstream Signaling Molecules into Lipid Rafts

    Get PDF
    Avicins, a family of triterpene electrophiles originally identified as potent inhibitors of tumor cell growth, have been shown to be pleiotropic compounds that also possess antioxidant, anti-mutagenic, and anti-inflammatory activities. We previously showed that Jurkat cells, which express a high level of Fas, are very sensitive to treatment with avicins. Thus, we hypothesized that avicins may induce cell apoptosis by activation of the Fas pathway. By using a series of cell lines deficient in cell death receptors, we demonstrated that upon avicin D treatment, Fas translocates to the cholesterol- and sphingolipid-enriched membrane microdomains known as lipid rafts. In the lipid rafts, Fas interacts with Fas-associated death domain (FADD) and Caspase-8 to form death-inducing signaling complex (DISC) and thus mediates cell apoptosis. Interfering with lipid raft organization by using a cholesterol-depleting compound, methyl-β-cyclodextrin, not only prevents the clustering of Fas and its DISC complex but also reduces the sensitivity of the cells to avicin D. Avicin D activates Fas pathways independent of the association between extracellular Fas ligands and Fas receptors. A deficiency in Fas and its downstream signaling molecules leads to the resistance of the cells to avicin D treatment. Taken together, our results demonstrate that avicin D triggers the redistribution of Fas in the membrane lipid rafts, where Fas activates receptor-mediated cell death

    The Anticancer Plant Triterpenoid, Avicin D, Regulates Glucocorticoid Receptor Signaling: Implications for Cellular Metabolism

    Get PDF
    Avicins, a family of apoptotic triterpene electrophiles, are known to regulate cellular metabolism and energy homeostasis, by targeting the mitochondria. Having evolved from “ancient hopanoids,” avicins bear a structural resemblance with glucocorticoids (GCs), which are the endogenous regulators of metabolism and energy balance. These structural and functional similarities prompted us to compare the mode of action of avicin D with dexamethasone (Dex), a prototypical GC. Using cold competition assay, we show that Avicin D competes with Dex for binding to the GC receptor (GR), leading to its nuclear translocation. In contrast to Dex, avicin-induced nuclear translocation of GR does not result in transcriptional activation of GC-dependent genes. Instead we observe a decrease in the expression of GC-dependent metabolic proteins such as PEPCK and FASN. However, like Dex, avicin D treatment does induce a transrepressive effect on the pro-inflammatory transcription factor NF-κB. While avicin's ability to inhibit NF-κB and its downstream targets appear to be GR-dependent, its pro-apoptotic effects were independent of GR expression. Using various deletion mutants of GR, we demonstrate the requirement of both the DNA and ligand binding domains of GR in mediating avicin D's transrepressive effects. Modeling of avicin-GR interaction revealed that avicin molecule binds only to the antagonist confirmation of GR. These findings suggest that avicin D has properties of being a selective GR modulator that separates transactivation from transrepression. Since the gene-activating properties of GR are mainly linked to its metabolic effects, and the negative interference with the activity of transcription factors to its anti-inflammatory and immune suppressive effects, the identification of such a dissociated GR ligand could have great potential for therapeutic use
    corecore