12 research outputs found

    Single Crystal, High Band Gap CdS Thin Films Grown by RF Magnetron Sputtering in Argon Atmosphere for Solar Cell Applications

    Get PDF
    Single crystal thin films of CdS were grown onto glass substrates by RF magnetron sputtering at var ious substrate temperatures. Structural, optical and morphology properties of these films were investigated through low angle XRD, Raman spectroscopy, scanning electron microscopy (SEM), energy dispersive x-ray (EDX) spectroscopy, UV-Visible spectroscopy etc. Formation of single crystal CdS films has been confirmed by low angle XRD and Raman spectroscopy analysis. Low angle XRD showed that CdS films has preferred orientation in (111) direction. Improvement of crystallinity and increase in average grain size of CdS crystallites has been observed with increase in substrate temperature. Surface morphology investigated using SEM showed that CdS films deposited over entire range of substrate temperature are highly smooth, dense, homogeneous, and free of flaws and cracks. The EDX data revealed the formation of high-quality nearly stoichiometric CdS films by RF magnetron sputtering. Furthermore, the CdS films deposited at low substrate temperatures (< 200 0C) are slightly S rich while deposited at higher substrate temperatures (> 200 0C) are slightly Cd rich. The UV-Visible spectroscopy analysis showed that an average transmission ~ 80-90 % in the visible range of the spectrum having band gap ~ 2.28 -2.38 eV, which is quite close to the optimum value of band gap for a buffer layer in CdTe/CdS, Cu2S/CdS hetero-junction solar cells

    High Band Gap Nanocrystalline Tungsten Carbide (nc-WC) Thin Films Grown by Hot Wire Chemical Vapor Deposition (HW-CVD) Method

    Get PDF
    In present study nanocrystalline tungsten carbide (nc-WC) thin films were deposited by HW-CVD using heated W filament and CF4 gas. Influence of CF4 flow rate on structural, optical and electrical properties has been investigated. Formation of WC thin films was confirmed by low angle XRD, Raman spectroscopy and x-ray photoelectron spectroscopy (XPS) analysis. Low angle XRD analysis revealed that WC crystallites have preferred orientation in (101) direction and with increase in CF4 flow rate the volume fraction of WC crystallites and its average grain size increases. Formation of nano-sized WC was also confirmed by transmission electron microscopy (TEM) analysis. UV-Visible spectroscopy analysis revealed increase in optical transmission with increase in CF4 flow rate. The WC film deposited for 40 sccm of CF4 flow rate show high transparency (- 80-85 %) ranging from visible to infrared wavelengths region. The band gap shows increasing trend with increase in CF4 flow rate (3.48-4.18 eV). The electrical conductivity measured using Hall Effect was found in the range - 103-141 S/cm over the entire range of CF4 flow rate studied. The obtained results suggest that these wide band gap and conducting nc-WC films can be used as low cost counter electrodes in DSSCs and co-catalyst in electrochemical water splitting for hydrogen production

    Магнетронне розпилення при постійному тоці зворотного контакту Mo для тонкоплівкових сонячних елементів з халькопіриту

    No full text
    In present work, Mo films were deposited on corning glass substrates using DC-Magnetron sputtering. Influence of DC sputtering power on electrical, structural, morphological, optical and topological properties has been investigated by using Hall effect, Х-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), UV-Visible spectroscopy, non-contact-atomic force microscopy (NC-AFM) etc. It is observed that electrical resistivity and adhesion of Mo thin film were strongly affected by DC power. The synthesized Mo films were of few micrometer thicknesses (~ 0.9-1.6 m) with deposition rate in the range of 32-57 nm/min. Cross-hatch cut and Scotch tape adhesion test showed that all Mo films have good adhesion to the substrate. XRD analysis showed that as-deposited Mo films have preferred orientation in (110) direction and with enhancement in its crystallinity and average grain size with an increase in the DC sputtering power. Furthermore, XRD analysis showed that the Mo films deposited at DC sputtering power 300 W exhibit tensile strain, while deposited at DC sputtering power 350 W – exhibit compressive strain. FE-SEM analysis showed that all Mo films are dense, homogeneous and free of flaws and cracks. In the visible range of the spectrum, an increase in an average reflection of Mo films with DC sputtering power was observed by UV-Visible spectroscopy analysis. NC-AFM characterization revealed that the surface roughness of the films increases with an increase in the DC sputtering power. Hall effect measurements showed that the electrical resistivity of Mo films decreases while charge carrier mobility show increasing trend with increase in DC sputtering power. The obtained results suggest that as-synthesized Mo thin films with DC power 300 W have potential application as a back contact material for chalcopyrite compounds based on solar cells due to good adhesion and low electrical resistivity.В даній роботі, плівки Mo осаджувалися на підкладках із скла з використанням магнетронного розпилення при постійному струмі. Досліджено вплив потужності розпилення на електричні, структурні, морфологічні, оптичні та топологічні властивості за допомогою ефекту Холла, рентгенівської дифракції, автоелектронної скануючої мікроскопії, спектроскопії в УФ та видимої областях, неконтактної атомно-силової мікроскопії, тощо. Виявлено, що потужність постійного струму суттєво впливає на електричний опір і адгезію тонкої плівки Мо. Синтезовані плівки Mo мали товщину декількох мікрометрів (~ 0.9-1.6 мкм) зі швидкістю осадження в діапазоні 32-57 нм/хв. Випробування показали, що всі плівки Mo мають гарну адгезію до підкладки. Рентгено-дифракційний аналіз показав, що свіжосконденсовані плівки Mo мають переважну орієнтацію (110) і поліпшення її кристалічності та середнього розміру зерна зі збільшенням потужності розпилення при постійному струмі. Крім того, рентгенодифракційний аналіз показав, що плівки Mo, нанесені при потужності розпилення 300 Вт, демонструють деформацію розтягування, в той час як нанесені при потужності розпилення 350 Вт демонструють деформацію стиску. Результати автоелектронної скануючої мікроскопії показали, що всі плівки Mo щільні, однорідні і вільні від дефектів і тріщин. При спектроскопічному аналізі спостерігалося збільшення середнього коефіцієнту відбиття плівок Mo з потужністю розпилення спостерігалося у видимому діапазоні спектра. Неконтактна атомно-силова мікроскопія показала, що шорсткість поверхні плівок збільшується зі збільшенням потужності розпилення при постійному струмі. Вимірювання ефекту Холла показало, що електричний опір плівок Mo зменшується, а рухливість носіїв заряду збільшується з ростом потужності розпилення при постійному струмі. Отримані результати свідчать про те, що синтезовані тонкі плівки Мо з потужністю постійного струму 300 Вт мають перспективу застосування як матеріалу зворотного контакту для сполук халькопіритів на основі сонячних елементів завдяки хорошій адгезії та низькому електричному опору

    Hydrothermal synthesis of rGO–PbBi2Se4 composite and investigation of its structural, chemical and field emission properties

    No full text
    In the present study we report the one step facile synthesis of pristine lead bismuth selenide (PbBi2Se4) and reduced graphene oxide (rGO) and its composites with PbBi2Se4. Formation of pristine PbBi2Se4 and rGO–PbBi2Se4 composite were confirmed by X-ray diffraction and X-ray photoelectron spectroscopy. The surface morphology and topography investigated by using scanning electron microscopy and transmission electron microscopy revealed the formation of nano-flowers pristine PbBi2Se4. After coupling pristine PbBi2Se4 with rGO the surface morphology shows the formation of sharp vertically protruded nano-sheets/nano-flaks originated from the nano-flowers. Finally, the field emission properties of pristine PbBi2Se4 and rGO–PbBi2Se4 composite have been investigated. It has been observed that the rGO–PbBi2Se4 composite emitter exhibited excellent field emission properties with low turn-on field (~ 2.8 V/µm for 10 µA/cm2), high emission current density (~ 1288 µA/cm2 at 3.9 V/µm) and superior current stability (~ 4.5 h for ~ 1 µA) compare to pristine PbBi2Se4 emitter. Thus, the facile one step synthesis approach and robust nature of rGO–PbBi2Se4 composite emitter can provide prospects for the future development of large-area emitter applications such as flat-panel-display and vacuum micro/nanoelectronics devices

    Chemical spray pyrolysis synthesis of covellite copper sulphide (CuS) thin films for economical counter electrode for DSSCs

    No full text
    Thin films of covellite copper sulphide (CuS) were deposited on FTO substrates using chemical spray pyrolysis technique. Influence of Cu-to-S molar ratio on structural, surface morphological, optical and electrical properties were systematically investigated using variety of characterization techniques. Formation of covellite CuS films was confirmed by low angle-XRD and Raman spectroscopy. The field emission scanning electron microscopy analysis revealed the formation of faceted CuS particles without secondary growth. Optical studies exhibited decrease in optical band gap (from 2.21 to 1.69 eV) with increase in Cu-to-S molar ratio. Electrical properties were investigated using Van der Pauw four point probe method and Hall measurements revealed that as-synthesized CuS films have low sheet resistance (1.47–2.45 Ω/□), high carrier mobility (8.90–54.89 cm2/Vs) and high sheet concentration (1016–1018/cm2). The CuS films deposited at optimized Cu-to-S molar ratio (1:2.5) were then further studied for electrochemical impedance spectroscopy and photovoltaic characteristics. A quantum-dot sensitized solar cell incorporating optimized CuS film as counter electrode showed power conversion efficiency of ~ 1.05% with Voc ~ 0.46 V, Isc ~ 1.01 mA/cm2 and fill factor ~ 0.34%. Although the cell is not fully optimized and better results can be anticipated

    Chemical spray pyrolysis synthesis of covellite copper sulphide (CuS) thin films for economical counter electrode for DSSCs

    No full text
    Thin films of covellite copper sulphide (CuS) were deposited on FTO substrates using chemical spray pyrolysis technique. Influence of Cu-to-S molar ratio on structural, surface morphological, optical and electrical properties were systematically investigated using variety of characterization techniques. Formation of covellite CuS films was confirmed by low angle-XRD and Raman spectroscopy. The field emission scanning electron microscopy analysis revealed the formation of faceted CuS particles without secondary growth. Optical studies exhibited decrease in optical band gap (from 2.21 to 1.69 eV) with increase in Cu-to-S molar ratio. Electrical properties were investigated using Van der Pauw four point probe method and Hall measurements revealed that as-synthesized CuS films have low sheet resistance (1.47–2.45 Ω/□), high carrier mobility (8.90–54.89 cm2/Vs) and high sheet concentration (1016–1018/cm2). The CuS films deposited at optimized Cu-to-S molar ratio (1:2.5) were then further studied for electrochemical impedance spectroscopy and photovoltaic characteristics. A quantum-dot sensitized solar cell incorporating optimized CuS film as counter electrode showed power conversion efficiency of ~ 1.05% with Voc ~ 0.46 V, Isc ~ 1.01 mA/cm2 and fill factor ~ 0.34%. Although the cell is not fully optimized and better results can be anticipated

    Hydrothermal synthesis of rGO–PbBi2Se4 composite and investigation of its structural, chemical and field emission properties

    No full text
    In the present study we report the one step facile synthesis of pristine lead bismuth selenide (PbBi2Se4) and reduced graphene oxide (rGO) and its composites with PbBi2Se4. Formation of pristine PbBi2Se4 and rGO–PbBi2Se4 composite were confirmed by X-ray diffraction and X-ray photoelectron spectroscopy. The surface morphology and topography investigated by using scanning electron microscopy and transmission electron microscopy revealed the formation of nano-flowers pristine PbBi2Se4. After coupling pristine PbBi2Se4 with rGO the surface morphology shows the formation of sharp vertically protruded nano-sheets/nano-flaks originated from the nano-flowers. Finally, the field emission properties of pristine PbBi2Se4 and rGO–PbBi2Se4 composite have been investigated. It has been observed that the rGO–PbBi2Se4 composite emitter exhibited excellent field emission properties with low turn-on field (~ 2.8 V/µm for 10 µA/cm2), high emission current density (~ 1288 µA/cm2 at 3.9 V/µm) and superior current stability (~ 4.5 h for ~ 1 µA) compare to pristine PbBi2Se4 emitter. Thus, the facile one step synthesis approach and robust nature of rGO–PbBi2Se4 composite emitter can provide prospects for the future development of large-area emitter applications such as flat-panel-display and vacuum micro/nanoelectronics devices

    Highly stable and Pb-free bismuth-based perovskites for photodetector applications

    No full text
    Herein, we report the synthesis of highly stable, Pb-free bismuth iodide (BiI3 or BI), stoichiometric methylammonium bismuth iodide [(CH3NH3)3Bi2I9 or MA3Bi2I9 or s-MBI] and non-stoichiometric methylammonium bismuth iodide [(CH3NH3)2BiI5 or MA2BiI5 or Ns-MBI] perovskite thin films for photodetector applications. These films are synthesized at room temperature by a single step solution process spin coating method. The structural, optical, and morphological properties of these films were investigated using different characterization techniques such as XRD, Raman spectroscopy, FE-SEM, UV-Visible spectroscopy, etc. Formation of BI, s-MBI and Ns-MBI thin films is confirmed by XRD and Raman spectroscopy measurements. XRD analysis reveals that BI has a hexagonal crystal structure and a P63/mmc hexagonal space group for s-MBI and Ns-MBI. The optical properties of BI thin films show a high absorption coefficient (∼104 cm−1) and a band gap of ∼1.74 eV. Similarly, s-MBI films have a high absorption coefficient (∼103 cm−1) and an indirect band gap of ∼1.8 eV. Moving from s-MBI to Ns-MBI, the value of absorption coefficient is ∼103 cm−1 and the band gap corresponds to ∼2 eV. Finally, photodetectors based on the synthesized BI, s-MBI and Ns-MBI perovskites have been directly fabricated on FTO substrates. All photodetectors exhibited highly stable photo-switching behaviour along with excellent photoresponsivity and detectivity, with a fast response and recovery time. Our work demonstrates that Pb-free BI, s-MBI and Ns-MBI perovskites have great potential in the future for realizing stable photodetectors

    Highly stable and Pb-free bismuth-based perovskites for photodetector applications

    No full text
    Herein, we report the synthesis of highly stable, Pb-free bismuth iodide (BiI3 or BI), stoichiometric methylammonium bismuth iodide [(CH3NH3)3Bi2I9 or MA3Bi2I9 or s-MBI] and non-stoichiometric methylammonium bismuth iodide [(CH3NH3)2BiI5 or MA2BiI5 or Ns-MBI] perovskite thin films for photodetector applications. These films are synthesized at room temperature by a single step solution process spin coating method. The structural, optical, and morphological properties of these films were investigated using different characterization techniques such as XRD, Raman spectroscopy, FE-SEM, UV-Visible spectroscopy, etc. Formation of BI, s-MBI and Ns-MBI thin films is confirmed by XRD and Raman spectroscopy measurements. XRD analysis reveals that BI has a hexagonal crystal structure and a P63/mmc hexagonal space group for s-MBI and Ns-MBI. The optical properties of BI thin films show a high absorption coefficient (∼104 cm−1) and a band gap of ∼1.74 eV. Similarly, s-MBI films have a high absorption coefficient (∼103 cm−1) and an indirect band gap of ∼1.8 eV. Moving from s-MBI to Ns-MBI, the value of absorption coefficient is ∼103 cm−1 and the band gap corresponds to ∼2 eV. Finally, photodetectors based on the synthesized BI, s-MBI and Ns-MBI perovskites have been directly fabricated on FTO substrates. All photodetectors exhibited highly stable photo-switching behaviour along with excellent photoresponsivity and detectivity, with a fast response and recovery time. Our work demonstrates that Pb-free BI, s-MBI and Ns-MBI perovskites have great potential in the future for realizing stable photodetectors
    corecore