14 research outputs found

    Response of surfactant stabilized oil-in-water emulsions to the addition of particles in an aqueous suspension

    No full text
    As a model for understanding how surfactant-stabilized emulsions respond to the addition of interacting and noninteracting particles, we investigated the response of dodecane-in-water emulsions stabilized by SDS (anionic), CTAB (cationic), and Triton X-100 (nonionic) surfactants to the addition of an aqueous suspension of negatively charged fumed silica particles. The stability of the emulsion droplets and the concentration of surfactants/particles at the oil-water interfaces are sensitive to surfactant-particle interactions, mixing conditions, and the particle concentration in the bulk. Addition of the particle suspension to the SDS-stabilized emulsions showed no effect on emulsion stability. Coarsening of emulsion droplets is observed when fumed silica particles were added to emulsions stabilized by Triton X-100. Depending on the concentration of silica particles in the suspension, the addition of fumed silica particles to CTAB-stabilized emulsions resulted in droplet coalescence and phase separation of oil and water or formation of particle-coated droplets. Vigorous (vortex) mixing allows the particles to breach the oil-water interfaces and stabilize emulsions. While we have examined a specific particle suspension and a set of three surfactants, these observations can be generalized for other surfactant-particle mixtures

    The response of carbon black stabilized oil-in-water emulsions to the addition of surfactant solutions

    No full text
    We use carboxyl-terminated, negatively charged, carbon black (CB) particles suspended in water to create CB-stabilized octane-in-water emulsions, and examine the consequences of adding aqueous anionic (SOS, SDS), cationic (OTAB, DTAB), and nonionic (Triton X-100) surfactant solutions to these emulsions. Depending upon the amphiphile\u27s interaction with particles, interfacial activity, and bulk concentration, some CB particles get displaced from the octane-water interfaces and are replaced by surfactants. The emulsions remain stable through this exchange. Particles leave the octane-water interfaces by two distinct modes that depend on the nature of particle-surfactant interactions. Both happen over time scales of the order of seconds. For anionic and nonionic surfactants that bind to the CB through hydrophobic interactions, individual particles or small agglomerates stream away steadily from the interface. Cationic surfactants bind strongly to the carboxylate groups, reduce the magnitude of the surface potential, and cause the CB particles to agglomerate into easily visible chunks at the droplet interfaces. These chunks then leave the interfaces at discrete intervals, rather than in a steady stream. For the longer chain cationic surfactant, DTAB, the particle ejection mode reverts back to a steady stream as the concentration is increased beyond a threshold. This change from chunks of particles leaving intermittently to steady streaming is because of the formation of a surfactant bilayer on the particles that reverses the particle surface charge and makes them highly hydrophilic. The charge reversal also suppresses agglomeration. Zeta potentials of CB particles measured after exposure to surfactant solutions support this hypothesis. These results are the first systematic observations of different particle release modes from oil-water interfaces produced by variations in interactions between surfactants and particles. They can be generalized to other particle-surfactant systems and exploited for materials synthesis. © 2013 American Chemical Society

    Destabilization of Oil-in-Water Emulsions Stabilized by Non-ionic Surfactants: Effect of Particle Hydrophilicity

    No full text
    We investigate the use of particle hydrophilicity as a tool for emulsion destabilization in Triton-X-100-stabilized hexadecane-in-water emulsions. The hydrophilicity of the particles added to the aqueous phase was found to have a pronounced effect on the stability of the emulsion. Specifically, the addition of hydrophilic fumed silica particles to the aqueous phase resulted in coarsening of the emulsion droplets, with droplet flocculation observed at higher particle concentrations. On the other hand, when partially hydrophobic fumed silica particles were added to the aqueous phase, coarsening of the emulsion droplets was observed at low particle concentrations and phase separation of oil and water was observed at higher particle concentrations. Surface tension and interfacial tension measurements showed significant depletion of the surfactant from the aqueous phase in the presence of the partially hydrophobic particles. The observed changes in the stability of the emulsion and the depletion of the surfactant can be rationalized in terms of changes in the adsorption behavior of the surfactant molecules, from one dominated by hydrogen bonding on hydrophilic particles to one dominated by hydrophobic interactions on partially hydrophobic particles. Our findings also provide, for the first time, an in-depth understanding of antagonistic (destabilizing) effects in mixtures of partially hydrophobic particles and a non-ionic surfactant (Triton X-100) in water

    Microstructure and rheology of particle stabilized emulsions: Effects of particle shape and inter-particle interactions

    No full text
    Using fumed and spherical silica particles of similar hydrodynamic size, we investigated the effects of particle shape and inter-particle interactions on the formation, stability and rheology of bromohexadecane-in-water Pickering emulsions. The interparticle interactions were varied from repulsive to attractive by modifying the salt concentration in the aqueous phase. Optical microscope images revealed smaller droplet sizes for the fumed silica stabilized emulsions. All the emulsions remained stable for several weeks. Cryo-SEM images of the emulsion droplets showed a hexagonally packed single layer of particles at oil-water interfaces in emulsions stabilized with silica spheres, irrespective of the nature of the inter-particle interactions. Thus, entropic, excluded volume interactions dominate the fate of spherical particles at oil-water interfaces. On the other hand, closely packed layers of particles were observed at oil-water interfaces for the fumed silica stabilized emulsions for both attractive and repulsive interparticle interactions. At the high salt concentrations, attractive inter-particles interactions led to aggregation of fumed silica particles, and multiple layers of these particles were then observed on the droplet surfaces. A network of fumed silica particles was also observed between the emulsion droplets, suggesting that enthalpic interactions are responsible for the determining particle configurations at oil-water interfaces as well as in the aqueous phase. Steady shear viscosity measurements over a range of shear stresses, as well as oscillatory shear measurements at 1 Hz confirm the presence of a network in fumed silica suspensions and emulsions, and the lack of such a network when spherical particles are used. The fractal structure of fumed silica leads to several contact points and particle interlocking in the water as well as on the bromohexadecane-water interfaces, with corresponding effects on the structure and rheology of the emulsions. The attenuation of droplet motion due to the formation of a particle network can be exploited for stabilizing emulsions and for modulating their rheology

    Fabrication and electrical conductivity of suspended carbon nanofiber arrays

    No full text
    We demonstrate a simple, efficient and novel self-assembly based method to fabricate arrays of suspended polymeric nanofibers of polyacrylonitrile and SU-8 negative photoresist by electrospinning on micro-fabricated posts of resorcinol-formaldehyde (RF) gel. The suspended electrospun nanofibers together with the RF gel posts were subsequently pyrolyzed in an inert atmosphere to yield large area monolithic structures of suspended glassy carbon nanofibers (CNF) integrated on RF gel derived carbon posts. The electrospun nanofibers self-assemble to connect the posts owing to a stronger electric field on their tips, obviating the need for positioning and integration of carbon nanowires with the underlying microstructures and paving the way for fabricating novel carbon based micro and nano-scale devices. The fabrication technique also allowed measurements of electrical conductivity of a single suspended CNF between carbon electrodes using I-V characteristics and comparison of the carbon nanowire conductivities for the CNF derived from different polymer precursors.close1

    Biomimicked superhydrophobic polymeric and carbon surfaces

    No full text
    We report two direct and easy ways of fabricating stable, superhydrophobic polymeric and carbon surfaces directly by biomimicking the patterns found on natural plant leaves by micromolding and nanoimprint lithography. Two distinct classes of naturally occurring microtextures on superhydrophobic leaves were mimicked in this study, which include leaves of Elephant creeper (Argyreia Nervosa) and Nasturtium (Tropaeolum Majus). These show structural superhydrophobicity derived from high aspect ratio hairs and lower aspect ratio microtextures, respectively. Both the textures could be replicated by micromolding in different polymers, polydimethylsiloxane, polystyrene, and an organic resorcinol-formaldehyde (RF) gel. Patterned RF gel surfaces yielded superhydrophobic carbon surfaces upon pyrolysis because RF gel is a polymer precursor to glassy carbon. The nanoimprint lithography could be used for a direct transfer of the lower aspect ratio leaf patterns on the surfaces of various other polymers like poly(ethylene terephthalate) and poly(methyl methacrylate)

    The Response of Carbon Black Stabilized Oil-in-Water Emulsions to the Addition of Surfactant Solutions

    No full text
    We use carboxyl-terminated, negatively charged, carbon black (CB) particles suspended in water to create CB-stabilized octane-in-water emulsions, and examine the consequences of adding aqueous anionic (SOS, SDS), cationic (OTAB, DTAB), and nonionic (Triton X-100) surfactant solutions to these emulsions. Depending upon the amphiphile’s interaction with particles, interfacial activity, and bulk concentration, some CB particles get displaced from the octane–water interfaces and are replaced by surfactants. The emulsions remain stable through this exchange. Particles leave the octane–water interfaces by two distinct modes that depend on the nature of particle–surfactant interactions. Both happen over time scales of the order of seconds. For anionic and nonionic surfactants that bind to the CB through hydrophobic interactions, individual particles or small agglomerates stream away steadily from the interface. Cationic surfactants bind strongly to the carboxylate groups, reduce the magnitude of the surface potential, and cause the CB particles to agglomerate into easily visible chunks at the droplet interfaces. These chunks then leave the interfaces at discrete intervals, rather than in a steady stream. For the longer chain cationic surfactant, DTAB, the particle ejection mode reverts back to a steady stream as the concentration is increased beyond a threshold. This change from chunks of particles leaving intermittently to steady streaming is because of the formation of a surfactant bilayer on the particles that reverses the particle surface charge and makes them highly hydrophilic. The charge reversal also suppresses agglomeration. Zeta potentials of CB particles measured after exposure to surfactant solutions support this hypothesis. These results are the first systematic observations of different particle release modes from oil–water interfaces produced by variations in interactions between surfactants and particles. They can be generalized to other particle–surfactant systems and exploited for materials synthesis

    One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8

    No full text
    We propose a novel and simplified method to fabricate complex 3-dimensional structures in SU-8 photoresist using maskless grayscale lithography. The proposed method uses a Digital Micro-mirror Device (DMD (R)) to modulate the light intensity across a single SU-8 photoresist layer. Top and back-side exposure are implemented in the fabrication of original structures such as cantilevers, covered channels with embedded features and arrays of microneedles. The fabrication of similar structures in SU-8 with other techniques often requires complex physical masks or the patterning of several stacked layers. The effects of critical process parameters such as software mask design, exposure and developing conditions on the quality of 3-D structures are discussed. A number of applications using bridges, cantilevers and micromixers fabricated using this methodology are explored.close131
    corecore