312 research outputs found

    Efficacy of cathelicidin-mimetic antimicrobial peptoids against staphylococcus aureus

    Get PDF
    Staphylococcus aureus is one of the most common pathogens associated with infection in wounds. The current standard of care uses a combination of disinfection and drainage followed by conventional antibiotics such as methicillin. Methicillin and vancomycin resistance has rendered these treatments ineffective, often causing the reemergence of infection. This study examines the use of antimicrobial peptoids (sequence-specific poly-N-substituted glycines) designed to mimic naturally occurring cationic, amphipathic host defense peptides, as an alternative to conventional antibiotics. These peptoids also show efficient and fast (<30 min) killing of methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) at low micromolar concentrations without having apparent cytotoxic side effects in vivo. Additionally, these novel peptoids show excellent efficacy against biofilm formation and detachment for both MSSA and MRSA. In comparison, conventional antibiotics were unable to detach or prevent formation of biofilms. One cationic 12mer, Peptoid 1, shows great promise, as it could prevent formation of and detach biofilms at concentrations as low as 1.6 μM. The use of a bioluminescent S. aureus murine incision wound model demonstrated clearance of infection in peptoid-treated mice within 8 days, conveying another advantage these peptoids have over conventional antibiotics. These results provide clear evidence of the potential for antimicrobial peptoids for the treatment of S. aureus wound infections. IMPORTANCE Staphylococcus aureus resistance is a consistent problem with a large impact on the health care system. Infections with resistant S. aureus can cause serious adverse effects and can result in death. These antimicrobial peptoids show efficient killing of bacteria both as a biofilm and as free bacteria, often doing so in less than 30 min. As such, these antimicrobials have the potential to alleviate the burden that Staphylococcus infections have on the health care system and cause better outcomes for infected patients

    Regulation of oligodendrocyte progenitor cell maturation by PPARδ: effects on bone morphogenetic proteins

    Get PDF
    In EAE (experimental autoimmune encephalomyelitis), agonists of PPARs (peroxisome proliferator-activated receptors) provide clinical benefit and reduce damage. In contrast with PPARγ, agonists of PPARδ are more effective when given at later stages of EAE and increase myelin gene expression, suggesting effects on OL (oligodendrocyte) maturation. In the present study we examined effects of the PPARδ agonist GW0742 on OPCs (OL progenitor cells), and tested whether the effects involve modulation of BMPs (bone morphogenetic proteins). We show that effects of GW0742 are mediated through PPARδ since no amelioration of EAE clinical scores was observed in PPARδ-null mice. In OPCs derived from E13 mice (where E is embryonic day), GW0742, but not the PPARγ agonist pioglitazone, increased the number of myelin-producing OLs. This was due to activation of PPARδ since process formation was reduced in PPARδ-null compared with wild-type OPCs. In both OPCs and enriched astrocyte cultures, GW0742 increased noggin protein expression; however, noggin mRNA was only increased in astrocytes. In contrast, GW0742 reduced BMP2 and BMP4 mRNA levels in OPCs, with lesser effects in astrocytes. These findings demonstrate that PPARδ plays a role in OPC maturation, mediated, in part, by regulation of BMP and BMP antagonists

    Theoretical Analysis of Quantum Ghost Imaging Through Turbulence

    Get PDF
    Atmospheric turbulence generally affects the resolution and visibility of an image in long-distance imaging. In a recent quantum ghost imaging experiment [P. B. Dixon et al., Phys. Rev. A 83, 051803 (2011)], it was found that the effect of the turbulence can nevertheless be mitigated under certain conditions. This paper gives a detailed theoretical analysis to the setup and results reported in the experiment. Entangled photons with a finite correlation area and a turbulence model beyond the phase screen approximation are considered

    Facts, Values and Quanta

    Full text link
    Quantum mechanics is a fundamentally probabilistic theory (at least so far as the empirical predictions are concerned). It follows that, if one wants to properly understand quantum mechanics, it is essential to clearly understand the meaning of probability statements. The interpretation of probability has excited nearly as much philosophical controversy as the interpretation of quantum mechanics. 20th century physicists have mostly adopted a frequentist conception. In this paper it is argued that we ought, instead, to adopt a logical or Bayesian conception. The paper includes a comparison of the orthodox and Bayesian theories of statistical inference. It concludes with a few remarks concerning the implications for the concept of physical reality.Comment: 30 pages, AMS Late

    Systems thinking and efficiency under emissions constraints: Addressing rebound effects in digital innovation and policy

    Get PDF
    Innovations and efficiencies in digital technology have lately been depicted as paramount in the green transition to enable the reduction of greenhouse gas emissions, both in the information and communication technology (ICT) sector and the wider economy. This, however, fails to adequately account for rebound effects that can offset emission savings and, in the worst case, increase emissions. In this perspective, we draw on a transdisciplinary workshop with 19 experts from carbon accounting, digital sustainability research, ethics, sociology, public policy, and sustainable business to expose the challenges of addressing rebound effects in digital innovation processes and associated policy. We utilize a responsible innovation approach to uncover potential ways forward for incorporating rebound effects in these domains, concluding that addressing ICT-related rebound effects ultimately requires a shift from an ICT efficiency-centered perspective to a “systems thinking” model, which aims to understand efficiency as one solution among others that requires constraints on emissions for ICT environmental savings to be realized

    High-Resolution Functional Mapping of the Venezuelan Equine Encephalitis Virus Genome by Insertional Mutagenesis and Massively Parallel Sequencing

    Get PDF
    We have developed a high-resolution genomic mapping technique that combines transposon-mediated insertional mutagenesis with either capillary electrophoresis or massively parallel sequencing to identify functionally important regions of the Venezuelan equine encephalitis virus (VEEV) genome. We initially used a capillary electrophoresis method to gain insight into the role of the VEEV nonstructural protein 3 (nsP3) in viral replication. We identified several regions in nsP3 that are intolerant to small (15 bp) insertions, and thus are presumably functionally important. We also identified nine separate regions in nsP3 that will tolerate small insertions at low temperatures (30°C), but not at higher temperatures (37°C, and 40°C). Because we found this method to be extremely effective at identifying temperature sensitive (ts) mutations, but limited by capillary electrophoresis capacity, we replaced the capillary electrophoresis with massively parallel sequencing and used the improved method to generate a functional map of the entire VEEV genome. We identified several hundred potential ts mutations throughout the genome and we validated several of the mutations in nsP2, nsP3, E3, E2, E1 and capsid using single-cycle growth curve experiments with virus generated through reverse genetics. We further demonstrated that two of the nsP3 ts mutants were attenuated for virulence in mice but could elicit protective immunity against challenge with wild-type VEEV. The recombinant ts mutants will be valuable tools for further studies of VEEV replication and virulence. Moreover, the method that we developed is applicable for generating such tools for any virus with a robust reverse genetics system

    Quantum Tasks in Minkowski Space

    Full text link
    The fundamental properties of quantum information and its applications to computing and cryptography have been greatly illuminated by considering information-theoretic tasks that are provably possible or impossible within non-relativistic quantum mechanics. I describe here a general framework for defining tasks within (special) relativistic quantum theory and illustrate it with examples from relativistic quantum cryptography and relativistic distributed quantum computation. The framework gives a unified description of all tasks previously considered and also defines a large class of new questions about the properties of quantum information in relation to Minkowski causality. It offers a way of exploring interesting new fundamental tasks and applications, and also highlights the scope for a more systematic understanding of the fundamental information-theoretic properties of relativistic quantum theory

    Health Education through Analogies: Preparation of a Community for Clinical Trials of a Vaccine against Hookworm in an Endemic Area of Brazil

    Get PDF
    Conducting clinical trials of new vaccines in rural, resource-limited areas can be challenging since the people living in these areas often have high levels of illiteracy, little experience with clinical research, and limited access to routine health care. Especially difficult is obtaining informed consent for participation in this type of research and ensuring that potential participants adequately understand the potential risks and benefits of participation. The researchers have been preparing a remote field site in the northeastern part of the state of Minas Gerais, Brazil, for clinical trials of experimental hookworm vaccines. A special educational video was designed based on the method of analogies to introduce new scientific concepts related to the researchers' work and to improve knowledge of hookworm, a disease that is highly prevalent in their community. A questionnaire was administered both before and after the video was shown to a group of adults at the field site, which demonstrated the effectiveness of the video in disseminating knowledge about hookworm infection and about the vaccine being developed. Therefore, even in a rural, resource-limited area, educational tools can be specially designed that significantly improve understanding and therefore the likelihood of obtaining truly informed consent for participation in clinical research

    Introduction: reconsidering the region in India: mobilities, actors and development politics

    Get PDF
    In this introduction to a special issue on ‘Reconsidering the Region in India’, we aim to develop a synthetic and theoretically nuanced account of the multifarious ways in which the idea of region has been imbricated in diverse spatial, political, cultural and socio-economic configurations. We draw from various bodies of anthropological, geographic and historical literature to elaborate on three themes that we believe are central to understanding contemporary processes of region-making in India: trans-regional mobilities and connections; the actors who produce and perform regional imaginaries; and changing regional politics of development.IS
    corecore