110 research outputs found

    Shot noise detection in hBN-based tunnel junctions

    Full text link
    High quality Au/hBN/Au tunnel devices are fabricated using transferred atomically thin hexagonal boron nitride as the tunneling barrier. All tunnel junctions show tunneling resistance on the order of several kΩ\Omega/μ\mum2^{2}. Ohmic I-V curves at small bias with no signs of resonances indicate the sparsity of defects. Tunneling current shot noise is measured in these devices, and the excess shot noise shows consistency with theoretical expectations. These results show that atomically thin hBN is an excellent tunnel barrier, especially for the study of shot noise properties, and this can enable the study of tunneling density of states and shot noise spectroscopy in more complex systems.Comment: 20 pages, 4 figure

    Nanoscale Electronic Transport Studies of Novel Strongly Correlated Materials

    Get PDF
    Strongly correlated materials are those in which the electron-electron and electron-lattice interactions play pivotal roles in determining many aspects of observable physical behavior, including the electronic and magnetic properties. In this thesis, I describe electronic transport studies of novel strongly correlated materials at the nanoscale. After introducing some basic concepts, briefly reviewing historical development of the field, and discussing the process of making measurements on small length scales, I detail experimental results from studies of four specific materials: two transition metal oxide systems, and two layered transition metal dichalcogenides with intercalated magnetic moments. The first system is a modified version of a classic strongly correlated material, vanadium dioxide (VO2), which here is doped with hydrogen to suppress its metal-insulator transition and stabilize a poorly metallic phase down to liquid helium temperatures. Doped VO2 nanowires, micron flakes, and thin films display magnetoresistance (MR) consistent with weak localization physics, along with mesoscopic resistance fluctuations over short distances, raising questions about how to model transport in bad-metal correlated systems. A second transition metal oxide system is considered next: Quantum wells in SrTiO3 sandwiched between layers of SmTiO3, in which anomalous voltage fluctuation behavior is observed in etched nanostructures at low temperatures. After well-understood alternative origins are ruled out, an explanation is proposed involving a time-varying thermopower due to two-level fluctuations of etching-induced defects. Next, I shift to the topic of layered itinerant magnetic materials with intercalated moments, starting with Fe0.28TaS2, a hard ferromagnet (FM) with strong spin-orbit coupling. Here, a surprisingly large MR of nearly 70% is observed, an especially striking feature given that the closely related compounds at Fe intercalation fractions of 1/4 or 1/3 have MR nearly two orders of magnitude smaller. In the latter compounds, the Fe atoms are arranged in ordered superlattices, whereas for the 0.28 case, a portion of the Fe moments deviate from ordered arrangement and are relatively easily flipped by an external magnetic field to be anti-aligned with neighboring ordered Fe moments. This situation, combined with strong spin-orbit coupling, results in enhanced charge carrier scattering and greatly increased resistance. The thesis concludes with a study of a second layered magnetic material, V5S8 (structurally equivalent to V0.25VS2), which is found to have a magnetic field driven phase transition at low temperatures, believed to be from antiferromagnetism to paramagnetism. This transition is first order in thick crystals, but becomes second order as the crystal thickness decreases toward 10 nm. Together, the experiments described in this thesis highlight the complexity and diversity of strongly correlated materials, while showcasing the power of nanoscale electronic transport in delivering an improved understanding of these systems

    Very large magnetoresistance in Fe0.28_{0.28}TaS2_{2} single crystals

    Full text link
    Magnetic moments intercalated into layered transition metal dichalcogenides are an excellent system for investigating the rich physics associated with magnetic ordering in a strongly anisotropic, strong spin-orbit coupling environment. We examine electronic transport and magnetization in Fe0.28_{0.28}TaS2_{2}, a highly anisotropic ferromagnet with a Curie temperature TC∼68.8 T_{\mathrm{C}} \sim 68.8~K. We find anomalous Hall data confirming a dominance of spin-orbit coupling in the magnetotransport properties of this material, and a remarkably large field-perpendicular-to-plane MR exceeding 60% at 2 K, much larger than the typical MR for bulk metals, and comparable to state-of-the-art GMR in thin film heterostructures, and smaller only than CMR in Mn perovskites or high mobility semiconductors. Even within the Fex_xTaS2_2 series, for the current xx = 0.28 single crystals the MR is nearly 100×100\times higher than that found previously in the commensurate compound Fe0.25_{0.25}TaS2_{2}. After considering alternatives, we argue that the large MR arises from spin disorder scattering in the strong spin-orbit coupling environment, and suggest that this can be a design principle for materials with large MR.Comment: 8 pages, 8 figures, accepted in PR

    Nanostructure Investigations of Nonlinear Differential Conductance in NdNiO3_3 Thin Films

    Full text link
    Transport measurements on thin films of NdNiO3_3 reveal a crossover to a regime of pronounced nonlinear conduction below the well-known metal-insulator transition temperature. The evolution of the transport properties at temperatures well below this transition appears consistent with a gradual formation of a gap in the hole-like Fermi surface of this strongly correlated system. As TT is decreased below the nominal transition temperature, transport becomes increasily non-Ohmic, with a model of Landau-Zener breakdown becoming most suited for describing I(V)I(V) characteristics as the temperature approaches 2~K.Comment: 18 pages, 6 figures, accepted for publication in PR

    Thermally Driven Analog of the Barkhausen Effect at the Metal-Insulator Transition in Vanadium Dioxide

    Get PDF
    The physics of the metal-insulator transition (MIT) in vanadium dioxide remains a subject of intense interest. Because of the complicating effects of elastic strain on the phase transition, there is interest in comparatively strain-free means of examining VO2 material properties. We report contact-free, low-strain studies of the MIT through an inductive bridge approach sensitive to the magnetic response of VO2 powder. Rather than observing the expected step-like change in susceptibility at the transition, we argue that the measured response is dominated by an analog of the Barkhausen effect, due to the extremely sharp jump in the magnetic response of each grain as a function of time as the material is cycled across the phase boundary. This effect suggests that future measurements could access the dynamics of this and similar phase transitions.Comment: 16 pages, 4 figures. Accepted for publication in Appl. Phys. Let

    Hydrogen Diffusion and Stabilization in Single-crystal VO2 Micro/nanobeams by Direct Atomic Hydrogenation

    Full text link
    We report measurements of the diffusion of atomic hydrogen in single crystalline VO2 micro/nanobeams by direct exposure to atomic hydrogen, without catalyst. The atomic hydrogen is generated by a hot filament, and the doping process takes place at moderate temperature (373 K). Undoped VO2 has a metal-to-insulator phase transition at ~340 K between a high-temperature, rutile, metallic phase and a low-temperature, monoclinic, insulating phase with a resistance exhibiting a semiconductor-like temperature dependence. Atomic hydrogenation results in stabilization of the metallic phase of VO2 micro/nanobeams down to 2 K, the lowest point we could reach in our measurement setup. Based on observing the movement of the hydrogen diffusion front in single crystalline VO2 beams, we estimate the diffusion constant for hydrogen along the c-axis of the rutile phase to be 6.7 x 10^{-10} cm^2/s at approximately 373 K, exceeding the value in isostructural TiO2 by ~ 38x. Moreover, we find that the diffusion constant along the c-axis of the rutile phase exceeds that along the equivalent a-axis of the monoclinic phase by at least three orders of magnitude. This remarkable change in kinetics must originate from the distortion of the "channels" when the unit cell doubles along this direction upon cooling into the monoclinic structure. Ab initio calculation results are in good agreement with the experimental trends in the relative kinetics of the two phases. This raises the possibility of a switchable membrane for hydrogen transport.Comment: 23 pages, 4 figs + supporting materia

    Effective out-of-plane g-factor in strained-Ge/SiGe quantum dots

    Full text link
    Recently, lithographic quantum dots in strained-Ge/SiGe have become a promising candidate for quantum computation, with a remarkably quick progression from demonstration of a quantum dot to qubit logic demonstrations. Here we present a measurement of the out-of-plane gg-factor for single-hole quantum dots in this material. As this is a single-hole measurement, this is the first experimental result that avoids the strong orbital effects present in the out-of-plane configuration. In addition to verifying the expected gg-factor anisotropy between in-plane and out-of-plane magnetic (BB)-fields, variations in the gg-factor dependent on the occupation of the quantum dot are observed. These results are in good agreement with calculations of the gg-factor using the heavy- and light-hole spaces of the Luttinger Hamiltonian, especially the first two holes, showing a strong spin-orbit coupling and suggesting dramatic gg-factor tunability through both the BB-field and the charge state
    • …
    corecore