36 research outputs found

    Differentiation of Hebbian and homeostatic plasticity mechanisms within layer 5 visual cortex neurons

    Get PDF
    Cortical layer 5 contains two major types of projection neuron known as IB (intrinsic bursting) cells that project sub-cortically and RS (regular spiking) cells that project between cortical areas. This study describes the plasticity properties of RS and IB cells in the mouse visual cortex during the critical period for ocular dominance plasticity. We find that RS neurons exhibit synaptic depression in response to both dark exposure (DE) and monocular deprivation (MD), and their homeostatic recovery from depression is dependent on TNF-α. In contrast, IB cells demonstrate opposite responses to DE and MD, potentiating to DE and depressing to MD. IB cells’ potentiation depends on CaMKII-autophosphorylation and not TNF-α. IB cells show mature synaptic properties at the start of the critical period while RS cells mature during the critical period. Together with observations in somatosensory cortex, these results suggest that differences in RS and IB plasticity mechanisms are a general cortical property

    Preconditioning doses of NMDA promote neuroprotection by enhancing neuronal excitability

    Get PDF
    Neuroprotection can be induced by low doses of NMDA, which activate both synaptic and extrasynaptic NMDA receptors. This is in apparent contradiction with our recent findings that extrasynaptic NMDA receptor signaling exerts a dominant inhibitory effect on prosurvival signaling from synaptic NMDA receptors. Here we report that exposure to low preconditioning doses of NMDA results in preferential activation of synaptic NMDA receptors because of a dramatic increase in action potential firing. Both acute and long-lasting phases of neuroprotection in the face of apoptotic or excitotoxic insults are dependent on this firing enhancement. Key mediators of synaptic NMDA receptor-dependent neuroprotection, phosphatidylinositol 3 kinase-Akt (PI3 kinase-Akt) signaling to Forkhead box subgroup O (FOXO) export and glycogen synthase kinase 3β (GSK3β) inhibition and cAMP response element-binding protein-dependent (CREB-dependent) activation of brain-derived neurotrophic factor (BDNF), can be induced only by low doses of NMDA via this action potential-dependent route. In contrast, NMDA doses on the other side of the toxicity threshold do not favor synaptic NMDA receptor activation because they strongly suppress firing rates below baseline. The classic bell-shaped curve depicting neuronal fate in response to NMDA dose can be viewed as the net effect of two antagonizing (synaptic vs extrasynaptic) curves: via increased firing the synaptic signaling dominates at low doses, whereas firing becomes suppressed and extrasynaptic signaling dominates as the toxicity threshold is crossed

    Adult cortical plasticity depends on an early postnatal critical period

    Get PDF
    Development of the cerebral cortex is influenced by sensory experience during distinct phases of postnatal development known as critical periods. Disruption of experience during a critical period produces neurons that lack specificity for particular stimulus features, such as location in the somatosensory system. Synaptic plasticity is the agent by which sensory experience affects cortical development. Here, we describe, in mice, a developmental critical period that affects plasticity itself. Transient neonatal disruption of signaling via the C-terminal domain of "disrupted in schizophrenia 1" (DISC1)-a molecule implicated in psychiatric disorders-resulted in a lack of long-term potentiation (LTP) (persistent strengthening of synapses) and experience-dependent potentiation in adulthood. Long-term depression (LTD) (selective weakening of specific sets of synapses) and reversal of LTD were present, although impaired, in adolescence and absent in adulthood. These changes may form the basis for the cognitive deficits associated with mutations in DISC1 and the delayed onset of a range of psychiatric symptoms in late adolescence

    Post-synaptic action potentials are required for nitric oxide-dependent LTP in CA1 neurons of adult GluR1 knockout and wild-type mice

    Get PDF
    Neocortical long-term potentiation (LTP) consists of both presynaptic and postsynaptic components that rely on nitric oxide (NO) and the GluR1 subunit of the AMPA receptor, respectively. In this study, we found that hippocampal LTP, induced by theta-burst stimulation in mature (>8-week-old) GluR1 knock-out mice was almost entirely NO dependent and involved both the α splice variant of NO synthase-1 and the NO synthase-3 isoforms of NO synthase. Theta-burst induced LTP was also partly NO-dependent in wild-type mice and made up ∼50% of the potentiation 2 h after tetanus. Theta-burst stimulation reliably produced postsynaptic spikes, including a high probability of complex spikes. Inhibition of postsynaptic somatic spikes with intracellular QX314 or local TTX application prevented LTP in the GluR1 knock-out mice and also blocked the NO component of LTP in wild types. We conclude that theta-burst stimulation is particularly well suited to producing the postsynaptic somatic spikes required for NO-dependent LTP

    Extracellular Calcium Regulates Postsynaptic Efficacy through Group 1 Metabotropic Glutamate Receptors

    Full text link
    Bursts of synaptic transmission are known to induce transient depletion of Ca2+ within the synaptic cleft. Although Ca2+ depletion has been shown to lower presynaptic release probability, effects on the postsynaptic cell have not been reported. In this study, we show that physiologically relevant reductions in extracellular Ca2+ lead to a decrease in synaptic strength between synaptically coupled layer 2/3 cortical pyramidal neurons. Using quantal analysis and mEPSP analysis, we demonstrate that a lowered extracellular Ca2+ produces a reduction in the postsynaptic quantal size in addition to its known effect on release probability. An elevated Mg2+ level can prevent this reduction in postsynaptic efficacy at subphysiological Ca2+ levels. We show that the calcium-dependent effect on postsynaptic quantal size is mediated by group 1 metabotropic glutamate receptors, acting via CaMKII (Ca2+/calmodulin-dependent protein kinase II) and PKC. Therefore, physiologically relevant changes in extracellular Ca2+ can regulate information transfer at cortical synapses via both presynaptic and postsynaptic mechanisms

    Neocortical long-term potentiation and experience-dependent synaptic plasticity require alpha-calcium/calmodulin-dependent protein kinase II autophosphorylation

    Get PDF
    Experience-dependent plasticity can be induced in the barrel cortex by removing all but one whisker, leading to potentiation of the neuronal response to the spared whisker. To determine whether this form of potentiation depends on synaptic plasticity, we studied long-term potentiation (LTP) and sensory-evoked potentials in the barrel cortex of -calcium/calmodulin-dependent protein kinase II (CaMKII)T286A mutant mice. We studied three different forms of LTP induction: theta-burst stimulation, spike pairing, and postsynaptic depolarization paired with low-frequency presynaptic stimulation. None of these protocols produced LTP in CaMKIIT286A mutant mice, although all three were successful in wild-type mice. To study synaptic plasticity in vivo, we measured sensory-evoked potentials in the barrel cortex and found that single-whisker experience selectively potentiated synaptic responses evoked by sensory stimulation of the spared whisker in wild types but not in CaMKIIT286A mice. These results demonstrate that CaMKII autophosphorylation is required for synaptic plasticity in the neocortex, whether induced by a variety of LTP induction paradigms or by manipulation of sensory experience, thereby strengthening the case that the two forms of plasticity are related

    Quantal Analysis Reveals a Functional Correlation between Presynaptic and Postsynaptic Efficacy in Excitatory Connections from Rat Neocortex

    Get PDF
    At many central synapses, the presynaptic bouton and postsynaptic density are structurally correlated. However, it is unknown whether this correlation extends to the functional properties of the synapses. To investigate this, we made recordings from synaptically coupled pairs of pyramidal neurons in rat visual cortex. The mean peak amplitude of EPSPs recorded from pairs of L2/3 neurons ranged between 40 μV and 2.9 mV. EPSP rise times were consistent with the majority of the synapses being located on basal dendrites; this was confirmed by full anatomical reconstructions of a subset of connected pairs. Over a third of the connections could be described using a quantal model that assumed simple binomial statistics. Release probability (Pr) and quantal size (Q), as measured at the somatic recording site, showed considerable heterogeneity between connections. However, across the population of connections, values of Pr and Q for individual connections were positively correlated with one another. This correlation also held for inputs to layer 5 pyramidal neurons from both layer 2/3 and neighboring layer 5 pyramidal neurons, suggesting that during development of cortical connections presynaptic and postsynaptic strengths are dependently scaled. For 2/3 to 2/3 connections, mean EPSP amplitude was correlated with both Q and Pr values but uncorrelated with N, the number of functional release sites mediating the connection. The efficacy of a cortical connection is thus set by coordinated presynaptic and postsynaptic strength

    Functional brain defects in a mouse model of a chromosomal t(1;11) translocation that disrupts DISC1 and confers increased risk of psychiatric illness

    Get PDF
    A balanced t(1;11) translocation that directly disrupts DISC1 is linked to schizophrenia and affective disorders. We previously showed that a mutant mouse, named Der1, recapitulates the effect of the translocation upon DISC1 expression. Here, RNAseq analysis of Der1 mouse brain tissue found enrichment for dysregulation of the same genes and molecular pathways as in neuron cultures generated previously from human t(1;11) translocation carriers via the induced pluripotent stem cell route. DISC1 disruption therefore apparently accounts for a substantial proportion of the effects of the t(1;11) translocation. RNAseq and pathway analysis of the mutant mouse predicts multiple Der1-induced alterations converging upon synapse function and plasticity. Synaptosome proteomics confirmed that the Der1 mutation impacts synapse composition, and electrophysiology found reduced AMPA:NMDA ratio in hippocampal neurons, indicating changed excitatory signalling. Moreover, hippocampal parvalbumin-positive interneuron density is increased, suggesting that the Der1 mutation affects inhibitory control of neuronal circuits. These phenotypes predict that neurotransmission is impacted at many levels by DISC1 disruption in human t(1;11) translocation carriers. Notably, genes implicated in schizophrenia, depression and bipolar disorder by large-scale genetic studies are enriched among the Der1-dysregulated genes, just as we previously observed for the t(1;11) translocation carrier-derived neurons. Furthermore, RNAseq analysis predicts that the Der1 mutation primarily targets a subset of cell types, pyramidal neurons and interneurons, previously shown to be vulnerable to the effects of common schizophrenia-associated genetic variants. In conclusion, DISC1 disruption by the t(1;11) translocation may contribute to the psychiatric disorders of translocation carriers through commonly affected pathways and processes in neurotransmission

    Interdependence of primary and secondary somatosensory cortices for plasticity and texture discrimination learning

    Get PDF
    Feedforward and feedback pathways are important for transfer and integration of information between sensory cortical areas. Here we find that two closely connected cortical areas, the primary (S1) and secondary somatosensory cortices (S2) are both required for mice to learn a whisker-dependent texture discrimination. Increased inhibition in either area (using excitatory DREADDs expressed in inhibitory interneurones) prevents learning. We find that learning the discrimination produces structural plasticity of dendritic spines on layer 2/3 pyramidal neurones in vibrissae S1 that is restricted to the basal dendrites and leaves dendritic spines on apical dendrites unchanged. As S2 projects to the apical dendrites of S1 neurones, we tested whether S2 affects LTP-induction in S1. We found that feedback projections from S2 to S1 gates LTP on feedforward pathways within S1. These studies therefore demonstrate the interdependence of S1 and S2 for learning and plasticity in S1
    corecore