110 research outputs found

    Chronic recurrent Gorham-Stout syndrome with cutaneous involvement

    Get PDF
    Type IV osteolysis or Gorham-Stout syndrome is a rare condition characterized by recurrent vascular tumors that disrupt normal anatomical architecture. Gorham-Stout syndrome is most commonly associated with the skeletal system with resulting replacement of bone with scar tissue following tumor regression. The loss of entire bones has given Gorham-Stout syndrome the moniker vanishing bone disease. Natural progression of Gorham-Stout syndrome is characterized by spontaneous disease resolution. However, rare variants of recurrent, progressive, and/or systemic disease have been reported. We present a patient with a history of recurrent Gorham- Stout disease refractory to all treatment options considered. In addition to skeletal disease, our patient had soft tissue and cutaneous involvement, thus reflecting the more aggressive disease variant. Previous surgical attempts to control disease had been ineffective and the patient was referred to us for radiation therapy. Treatment with external beam radiation therapy resulted in good local control and symptom palliation, but full disease resolution was never accomplished. In addition to presentation of this patient, a review of the literature on etiological hypotheses and past/future treatment options was conducted and is included

    Retrospective French nationwide survey of childhood aggressive vascular anomalies of bone, 1988-2009

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To document the epidemiological, clinical, histological and radiological characteristics of aggressive vascular abnormalities of bone in children.</p> <p>Study design</p> <p>Correspondents of the French Society of Childhood Malignancies were asked to notify all cases of aggressive vascular abnormalities of bone diagnosed between January 1988 and September 2009.</p> <p>Results</p> <p>21 cases were identified; 62% of the patients were boys. No familial cases were observed, and the disease appeared to be sporadic. Mean age at diagnosis was 8.0 years [0.8-16.9 years]. Median follow-up was 3 years [0.3-17 years]. The main presenting signs were bone fracture (n = 4) and respiratory distress (n = 7), but more indolent onset was observed in 8 cases. Lung involvement, with lymphangiectasies and pleural effusion, was the most frequent form of extraosseous involvement (10/21). Bisphosphonates, alpha interferon and radiotherapy were used as potentially curative treatments. High-dose radiotherapy appeared to be effective on pleural effusion but caused major late sequelae, whereas antiangiogenic drugs like alpha interferon and zoledrenate have had a limited impact on the course of pulmonary complications. The impact of bisphosphonates and alpha interferon on bone lesions was also difficult to assess, owing to insufficient follow-up in most cases, but it was occasionally positive. Six deaths were observed and the overall 10-year mortality rate was about 30%. The prognosis depended mainly on pulmonary and spinal complications.</p> <p>Conclusion</p> <p>Aggressive vascular abnormalities of bone are extremely rare in childhood but are lifethreatening. The impact of anti-angiogenic drugs on pulmonary complications seems to be limited, but they may improve bone lesions.</p

    Model-based estimation of active knee stiffness

    No full text
    Knee joint impedance varies substantially during physiological gait. Quantifying this modulation is critical for the design of transfemoral prostheses that aim to mimic physiological limb behavior. Conventional methods for quantifying joint impedance typically involve perturbing the joint in a controlled manner, and describing impedance as the dynamic relationship between applied perturbations and corresponding joint torques. These experimental techniques, however, are difficult to apply during locomotion without impeding natural movements. In this paper, we propose a method to estimate the elastic component of knee joint impedance that depends on muscle activation, often referred to as active knee stiffness. The method estimates stiffness using a musculoskeletal model of the leg and a model for activation-dependent short-range muscle stiffness. Muscle forces are estimated from measurements including limb kinematics, kinetics and muscle electromyograms. For isometric validation, we compare model estimates to measurements involving joint perturbations; measured stiffness is 17% lower than model estimates for extension, and 42% lower for flexion torques. We show that sensitivity of stiffness estimates to common approaches for estimating muscle force is small in isometric conditions. We also make initial estimates of how knee stiffness is modulated during gait, illustrating how this approach may be used to obtain parameters relevant to the design of transfemoral prostheses. © 2011 IEEE
    corecore