5 research outputs found

    Effects of low seawater pH on the marine polychaete Platynereis dumerilii

    Get PDF
    An important priority for any organism is to maintain internal cellular homeostasis including acidbase balance. Yet, the molecular level impacts of changing environmental conditions, such as low pH, remain uncharacterised. Herein, we isolate partial Na+/H+ exchangers (NHE), carbonic anhydrase (CA), and calmodulin (CaM) genes from a polychaete, Platynereis dumerilii and investigate their relative expression in acidified seawater conditions. mRNA expression of NHE was significantly down-regulated after 1 h and up-regulated after 7 days under low pH treatment (pH 7.8), indicating changes in acid-base transport. Furthermore, the localisation of NHE expression was also altered. A trend of down regulation in CA after 1 h was also observed, suggesting a shift in the CO2 and HCO3- balance. No change in CaM expression was detected after 7 days exposure to acidified seawater. This study provides insight into the molecular level changes taking place following exposure to acidified seawater in a non-calcifying, ubiquitous, organism

    Identification, release and olfactory detection of bile salts in the intestinal fluid of the Senegalese sole (Solea senegalensis)

    Get PDF
    Olfactory sensitivity to bile salts is wide-spread in teleosts; however, which bile salts are released in suYcient quantities to be detected is unclear. The current study identiWed bile salts in the intestinal and bile Xuids of Solea senegalensis by mass spectrometry–liquid chromatography and assessed their olfactory potency by the electro-olfactogram

    Finding females: pheromone-guided reproductive tracking behavior by male Nereis succinea in the marine environment

    No full text
    Pheromones trigger reproductive responses of many marine organisms, but little is known about how pheromones mediate mate-finding behavior in the marine environment. This paper investigates whether the tetrapeptide nereithione (cysteine-glutathione disulfide), known to be released by females of the polychaete Nereis succinea to trigger spawning in male N. succinea, can also be used at lower concentrations to guide males to the females. Low concentrations of pheromone elicited increased swim speed and turning left or right 84% of the time. Animals sometimes weaved back and forth, or in other cases swam straight along the trails an average of 8.1 +/- 1.2 cm before veering off. At higher concentrations, the males circled frequently, often encountering 10-20 cm of pheromone trail before swimming away. Male responses to nereithione were modeled by computer simulation, taking into account arousal of swim speed, activation of turning, speed of response and its decay, etc. In the model, low concentrations (< 10(-8) mol l(-1)) of pheromone significantly increased the number of encounters with the pheromone trail, an average following of simulated trails of 10.5 +/- 3.6 cm, and a significant increase in the frequency of encountering a virtual female on the trail (ANOVA, P < 0.001). The model supports the hypothesis that a pheromone can have a dual function, with low concentration pheromone trails being used by male N. succinea to find females and increase their likelihood of mating whereas high concentrations of the same pheromone trigger the spawning behavior itself

    A prototype microfluidic chip using fluorescent yeast for detection of toxic compounds

    Full text link
    A microfluidic chip has been developed to enable the screening of chemicals for environmental toxicity. The microfluidic approach offers several advantages over macro-scale systems for toxicity screening, including low cost and flexibility in design. This design flexibility means the chips can be produced with multiple channels or chambers which can be used to screen for different toxic compounds, or the same toxicant at different concentrations. Saccharomyces cerevisiae containing fluorescent markers are ideal candidates for the microfluidic screening system as fluorescence is emitted without the need of additional reagents. Microfluidic chips containing eight multi-parallel channels have been developed to retain yeast within the chip and allow exposure of them to toxic compounds. The recombinant yeast used was GreenScreen™ which expresses green fluorescent proteins when is exposed to genotoxins. After exposure of the yeast to target compounds, the fluorescence emission was detected using an inverted microscope. Qualitative and quantitative comparisons of the fluorescent emission were performed. Results indicated that fluorescent intensity per area significantly increases upon exposure to methyl-methanesulfonate, a well known genotoxic compound. The microfluidic approach reported here is an excellent tool for cell-based screening and detection of different toxicities. The device has the potential for use by industrial manufacturers to detect and reduce the production and discharge of toxic compounds, as well as to characterise already polluted environments. © 2008 Elsevier B.V. All rights reserved

    Microscreening toxicity system based on living magnetic yeast and gradient chips

    Full text link
    There is an increasing demand for easy and cost-effective methods to screen the toxicological impact of the growing number of chemical mixtures being generated by industry. Such a screening method has been developed using viable, genetically modified green fluorescent protein (GFP) reporter yeast that was magnetically functionalised and held within a microfluidic device. The GFP reporter yeast was used to detect genotoxicity by monitoring the exposure of the cells to a well-known genotoxic chemical (methyl methane sulfonate, MMS). The cells were magnetised using biocompatible positively charged PAH-stabilised magnetic nanoparticles with diameters around 15 nm. Gradient mixing was utilised to simultaneously expose yeast to a range of concentrations of toxins, and the effective fluorescence emitted from the produced GFP was measured. The magnetically enhanced retention of the yeast cells, with their facile subsequent removal and reloading, allowed for very convenient and rapid toxicity screening of a wide range of chemicals. This is the first report showing magnetic yeast within microfluidic devices in a simple bioassay, with potential applications to other types of fluorescent reporter yeast in toxicological and biomedical research. The microfluidic chip offers a simple and low-cost screening test that can be automated to allow multiple uses (adapted to different cell types) of the device on a wide range of chemicals and concentrations
    corecore