13 research outputs found
Hyperbaric oxygen therapy for Alzheimer’s dementia with positron emission tomography imaging: a case report
A 58-year-old female was diagnosed with Alzheimer’s dementia (AD) which was rapidly progressive in the 8 months prior to initiation of hyperbaric oxygen therapy (HBOT). 18Fluorodeoxyglucose (18FDG) positron emission tomography (PET) brain imaging demonstrated global and typical metabolic deficits in AD (posterior temporal-parietal watershed and cingulate areas). An 8-week course of HBOT reversed the patient’s symptomatic decline. Repeat PET imaging demonstrated a corresponding 6.5–38% regional and global increase in brain metabolism, including increased metabolism in the typical AD diagnostic areas of the brain. Continued HBOT in conjunction with standard pharmacotherapy maintained the patient’s symptomatic level of function over an ensuing 22 months. This is the first reported case of simultaneous HBOT-induced symptomatic and 18FDG PET documented improvement of brain metabolism in AD and suggests an effect on global pathology in AD
Hyperbaric Oxygen Therapy in in Neurodegenerative Disease with Case Presentations of Alzheimer\u27s Disease
Dr. Harch’s keynote will outline his case presentations on Alzheimer’s, supported by Dr. Fogarty. To better understand that neurodegenerative diseases result from a combination of genetic factors and cumulative environmental factors that generate central nervous system inflammation and wounding. To understand the positive and negative literature on HBOT in a variety of neurodegenerative and neurodevelopment diseases and the effects of HBOT on inflammation
Systematic review and dosage analysis: hyperbaric oxygen therapy efficacy in the treatment of posttraumatic stress disorder
BackgroundStudies of hyperbaric oxygen therapy (HBOT) treatment of mild traumatic brain injury persistent postconcussion syndrome in military and civilian subjects have shown simultaneous improvement in posttraumatic stress disorder (PTSD) or PTSD symptoms, suggesting that HBOT may be an effective treatment for PTSD. This is a systematic review and dosage analysis of HBOT treatment of patients with PTSD symptoms.MethodsPubMed, CINAHL, and the Cochrane Systematic Review Database were searched from September 18 to November 23, 2023, for all adult clinical studies published in English on HBOT and PTSD. Randomized trials and studies with symptomatic outcomes were selected for final analysis and analyzed according to the dose of oxygen and barometric pressure on symptom outcomes. Outcome assessment was for statistically significant change and Reliable Change or Clinically Significant Change according to the National Center for PTSD Guidelines. Methodologic quality and bias were determined with the PEDro Scale.ResultsEight studies were included, all with < 75 subjects/study, total 393 subjects: seven randomized trials and one imaging case-controlled study. Six studies were on military subjects, one on civilian and military subjects, and one on civilians. Subjects were 3-450 months post trauma. Statistically significant symptomatic improvements, as well as Reliable Change or Clinically Significant changes, were achieved for patients treated with 40-60 HBOTS over a wide range of pressures from 1.3 to 2.0 ATA. There was a linear dose-response relationship for increased symptomatic improvement with increasing cumulative oxygen dose from 1002 to 11,400 atmosphere-minutes of oxygen. The greater symptomatic response was accompanied by a greater and severe reversible exacerbation of emotional symptoms at the highest oxygen doses in 30-39% of subjects. Other side effects were transient and minor. In three studies the symptomatic improvements were associated with functional and anatomic brain imaging changes. All 7 randomized trials were found to be of good-highest quality by PEDro scale scoring.DiscussionIn multiple randomized and randomized controlled clinical trials HBOT demonstrated statistically significant symptomatic improvements, Reliable Changes, or Clinically Significant Changes in patients with PTSD symptoms or PTSD over a wide range of pressure and oxygen doses. The highest doses were associated with a severe reversible exacerbation of emotional symptoms in 30-39% of subjects. Symptomatic improvements were supported by correlative functional and microstructural imaging changes in PTSD-affected brain regions. The imaging findings and hyperbaric oxygen therapy effects indicate that PTSD can no longer be considered strictly a psychiatric disease
Low pressure hyperbaric oxygen therapy and SPECT brain imaging in the treatment of blast-induced chronic traumatic brain injury (post-concussion syndrome) and post traumatic stress disorder: a case report
A 25-year-old male military veteran presented with diagnoses of post concussion syndrome and post traumatic stress disorder three years after loss of consciousness from an explosion in combat. The patient underwent single photon emission computed tomography brain blood flow imaging before and after a block of thirty-nine 1.5 atmospheres absolute hyperbaric oxygen treatments. The patient experienced a permanent marked improvement in his post-concussive symptoms, physical exam findings, and brain blood flow. In addition, he experienced a complete resolution of post-traumatic stress disorder symptoms. After treatment he became and has remained employed for eight consecutive months. This case suggests a novel treatment for the combined diagnoses of blast-induced post-concussion syndrome and post-traumatic stress disorder
Acute and chronic central nervous system oxidative stress/toxicity during hyperbaric oxygen treatment of subacute and chronic neurological conditions
IntroductionOxygen toxicity has been defined as acute central nervous system (CNS), acute pulmonary, and chronic pulmonary oxygen toxicity. This study identifies acute and chronic CNS oxygen toxicity under 2.0 atmospheres absolute (ATA) pressure of oxygen. Methods: The authors’ medical records from September 29, 1989 to January 20, 2023 and correspondence to the authors (9/1994 to 1/20.2023) from patients with signs and/or symptoms historically identified as acute CNS oxygen toxicity and those with neurological deterioration receiving hyperbaric oxygen for neurological conditions were reviewed. Acute cases were those occurring with ≤5 HBOTs and chronic cases >5 HBOTs. Chronic cases were separated into those at 1.5 ATA, > 1.5 ATA, or < 1.5 ATA oxygen. Cumulative dose of oxygen in atmosphere-hours (AHs) was calculated at symptom onset.ResultsSeven acute cases, average 4.0 ± 2.7 AHs, and 52 chronic cases were identified: 31 at 1.5 ATA (average 116 ± 106 AHs), 12 at >1.5 ATA (103 ± 74 AHs), and 9 at <1.5 ATA (114 ± 116 AHs). Second episodes occurred at 81 ± 55, 67 ± 49, and 22 ± 17 AHs, and three or more episodes at 25 ± 18, 83 ± 7.5, and 5.4 ± 6.0 AHs, respectively. Most cases were reversible. There was no difference between adults and children (p = 0.72). Acute intervention in cases (<3 months) was more sensitive than delayed intervention (21.1 ± 8.8 vs. 123 ± 102 AHs, p = 0.035). Outside sources reported one acute and two chronic exposure deaths and one patient institutionalized due to chronic oxygen toxicity. A withdrawal syndrome was also identified.ConclusionHyperbaric oxygen therapy-generated acute and chronic cases of CNS oxygen toxicity in chronic neurological conditions were identified at <2.0 ATA. Chronic CNS oxygen toxicity is idiosyncratic, unpredictable, and occurred at an average threshold of 103–116 AHs with wide variability. There was no difference between adults and children, but subacute cases were more sensitive than chronic intervention cases. When identified early it was reversible and an important aid in proper dosing of HBOT. If ignored permanent morbidity and mortality resulted with continued HBOT
Data_Sheet_2_Acute and chronic central nervous system oxidative stress/toxicity during hyperbaric oxygen treatment of subacute and chronic neurological conditions.pdf
IntroductionOxygen toxicity has been defined as acute central nervous system (CNS), acute pulmonary, and chronic pulmonary oxygen toxicity. This study identifies acute and chronic CNS oxygen toxicity under 2.0 atmospheres absolute (ATA) pressure of oxygen. Methods: The authors’ medical records from September 29, 1989 to January 20, 2023 and correspondence to the authors (9/1994 to 1/20.2023) from patients with signs and/or symptoms historically identified as acute CNS oxygen toxicity and those with neurological deterioration receiving hyperbaric oxygen for neurological conditions were reviewed. Acute cases were those occurring with ≤5 HBOTs and chronic cases >5 HBOTs. Chronic cases were separated into those at 1.5 ATA, > 1.5 ATA, or ResultsSeven acute cases, average 4.0 ± 2.7 AHs, and 52 chronic cases were identified: 31 at 1.5 ATA (average 116 ± 106 AHs), 12 at >1.5 ATA (103 ± 74 AHs), and 9 at ConclusionHyperbaric oxygen therapy-generated acute and chronic cases of CNS oxygen toxicity in chronic neurological conditions were identified at <2.0 ATA. Chronic CNS oxygen toxicity is idiosyncratic, unpredictable, and occurred at an average threshold of 103–116 AHs with wide variability. There was no difference between adults and children, but subacute cases were more sensitive than chronic intervention cases. When identified early it was reversible and an important aid in proper dosing of HBOT. If ignored permanent morbidity and mortality resulted with continued HBOT.</p
Table_1_Acute and chronic central nervous system oxidative stress/toxicity during hyperbaric oxygen treatment of subacute and chronic neurological conditions.pdf
IntroductionOxygen toxicity has been defined as acute central nervous system (CNS), acute pulmonary, and chronic pulmonary oxygen toxicity. This study identifies acute and chronic CNS oxygen toxicity under 2.0 atmospheres absolute (ATA) pressure of oxygen. Methods: The authors’ medical records from September 29, 1989 to January 20, 2023 and correspondence to the authors (9/1994 to 1/20.2023) from patients with signs and/or symptoms historically identified as acute CNS oxygen toxicity and those with neurological deterioration receiving hyperbaric oxygen for neurological conditions were reviewed. Acute cases were those occurring with ≤5 HBOTs and chronic cases >5 HBOTs. Chronic cases were separated into those at 1.5 ATA, > 1.5 ATA, or ResultsSeven acute cases, average 4.0 ± 2.7 AHs, and 52 chronic cases were identified: 31 at 1.5 ATA (average 116 ± 106 AHs), 12 at >1.5 ATA (103 ± 74 AHs), and 9 at ConclusionHyperbaric oxygen therapy-generated acute and chronic cases of CNS oxygen toxicity in chronic neurological conditions were identified at <2.0 ATA. Chronic CNS oxygen toxicity is idiosyncratic, unpredictable, and occurred at an average threshold of 103–116 AHs with wide variability. There was no difference between adults and children, but subacute cases were more sensitive than chronic intervention cases. When identified early it was reversible and an important aid in proper dosing of HBOT. If ignored permanent morbidity and mortality resulted with continued HBOT.</p
Data_Sheet_1_Acute and chronic central nervous system oxidative stress/toxicity during hyperbaric oxygen treatment of subacute and chronic neurological conditions.pdf
IntroductionOxygen toxicity has been defined as acute central nervous system (CNS), acute pulmonary, and chronic pulmonary oxygen toxicity. This study identifies acute and chronic CNS oxygen toxicity under 2.0 atmospheres absolute (ATA) pressure of oxygen. Methods: The authors’ medical records from September 29, 1989 to January 20, 2023 and correspondence to the authors (9/1994 to 1/20.2023) from patients with signs and/or symptoms historically identified as acute CNS oxygen toxicity and those with neurological deterioration receiving hyperbaric oxygen for neurological conditions were reviewed. Acute cases were those occurring with ≤5 HBOTs and chronic cases >5 HBOTs. Chronic cases were separated into those at 1.5 ATA, > 1.5 ATA, or ResultsSeven acute cases, average 4.0 ± 2.7 AHs, and 52 chronic cases were identified: 31 at 1.5 ATA (average 116 ± 106 AHs), 12 at >1.5 ATA (103 ± 74 AHs), and 9 at ConclusionHyperbaric oxygen therapy-generated acute and chronic cases of CNS oxygen toxicity in chronic neurological conditions were identified at <2.0 ATA. Chronic CNS oxygen toxicity is idiosyncratic, unpredictable, and occurred at an average threshold of 103–116 AHs with wide variability. There was no difference between adults and children, but subacute cases were more sensitive than chronic intervention cases. When identified early it was reversible and an important aid in proper dosing of HBOT. If ignored permanent morbidity and mortality resulted with continued HBOT.</p