27 research outputs found

    Small Change: Economics and the British coin-tree

    Get PDF
    This is the accepted manuscript for the following article: Ceri Houlbrook, “Small Change: Economics and the British coin-tree”, Post Medieval Archaeology, Vol. 49(1), June 2015. The final published version can be found at: http://www.tandfonline.com/doi/full/10.1179/0079423615Z.00000000074 © Society for Post-Medieval Archaeology 2015Throughout the c.2000 year period coins have been circulated in Britain, they have also been ritually employed, most notably as votive deposits. Focusing specifically on the understudied custom of the British coin-tree, whereby coins are ritually embedded into the barks of trees, this paper considers the coin’s role and applicability as a deposit. It aims to demonstrate that our understanding of the coin’s past, present, and future ritual employment is not only aided by a consideration of economics and the coin’s secular function; it would be utterly incomplete without it.Peer reviewedFinal Accepted Versio

    Cytotoxicity-related gene expression and chromatin accessibility define a subset of CD4+ T cells that mark progression to type 1 diabetes.

    No full text
    This article contains supplementary material online at https://doi.org/10.2337/figshare.17185898.Type 1 diabetes in children is heralded by a preclinical phase defined by circulating autoantibodies to pancreatic islet antigens. How islet autoimmunity is initiated and then progresses to clinical diabetes remains poorly understood. Only one study has reported gene expression in specific immune cells of children at risk associated with progression to islet autoimmunity. We analyzed gene expression with RNA sequencing in CD4+ and CD8+ T cells, natural killer (NK) cells, and B cells, and chromatin accessibility by assay for transposase-accessible chromatin sequencing (ATAC-seq) in CD4+ T cells, in five genetically at risk children with islet autoantibodies who progressed to diabetes over a median of 3 years (“progressors”) compared with five children matched for sex, age, and HLA-DR who had not progressed (“nonprogressors”). In progressors, differentially expressed genes (DEGs) were largely confined to CD4+ T cells and enriched for cytotoxicity-related genes/pathways. Several top-ranked DEGs were validated in a semi-independent cohort of 13 progressors and 11 nonprogressors. Flow cytometry confirmed that progression was associated with expansion of CD4+ cells with a cytotoxic phenotype. By ATAC-seq, progression was associated with reconfiguration of regulatory chromatin regions in CD4+ cells, some linked to differentially expressed cytotoxicity-related genes. Our findings suggest that cytotoxic CD4+ T cells play a role in promoting progression to type 1 diabetes.Naiara G. Bediaga, Alexandra L. Garnham, Gaetano Naselli, Esther Bandala-Sanchez, Natalie L. Stone, Joanna Cobb, Jessica E. Harbison, John M. Wentworth, Annette-G. Ziegler, Jennifer J. Couper, Gordon K. Smyth, and Leonard C. Harriso

    Associations between diet, the gut microbiome and short chain fatty acids in youth with islet autoimmunity and type 1 diabetes

    No full text
    First published: 20 January 2021Aim: We aimed to characterize associations between diet and the gut microbiome and short chain fatty acid (SCFA) products in youth with islet autoimmunity or type 1 diabetes (IA/T1D) in comparison with controls. Research design and methods: Eighty participants (25 diagnosed with T1D, 17 with confirmed IA, 38 sibling or unrelated controls) from the Australian T1D Gut Study cohort were studied (median [IQR] age 11.7 [8.9, 14.0] years, 43% female). A Food Frequency Questionnaire characterized daily macronutrient intake over the preceding 6 months. Plasma and fecal SCFA were measured by gas chromatography; gut microbiome composition and diversity by 16S rRNA gene sequencing. Results: A 10 g increase in daily carbohydrate intake associated with higher plasma acetate in IA/T1D (adjusted estimate +5.2 (95% CI 1.1, 9.2) μmol/L p = 0.01) and controls (adjusted estimate +4.1 [95% CI 1.7, 8.5] μmol/L p = 0.04). A 5 g increase in total fat intake associated with lower plasma acetate in IA/T1D and controls. A 5% increase in noncore (junk) food intake associated with reduced richness (adjusted estimate −4.09 [95%CI –7.83, −0.35] p = .03) and evenness (−1.25 [95% CI –2.00, −0.49] p < 0.01) of the gut microbiome in IA/T1D. Fiber intake associated with community structure of the microbiome in IA/T1D. Conclusions: Modest increments in carbohydrate and fat intake associated with plasma acetate in all youth. Increased junk food intake associated with reduced diversity of the gut microbiome in IA/T1D alone. These associations with the gut microbiome in IA/T1D support future efforts to promote SCFA by using dietary interventions.Jessica E. Harbison, Rebecca L. Thomson, John M. Wentworth, Jennie Louise, Alexandra Roth-Schulze, Rachel J. Battersby ... et al

    Gut microbiome dysbiosis and increased intestinal permeability in children with islet autoimmunity and type 1 diabetes: a prospective cohort study

    Get PDF
    AIMS/HYPOTHESIS:To investigate the longitudinal relationship between the gut microbiome, circulating short chain fatty acids (SCFAs) and intestinal permeability in children with islet autoimmunity or type 1 diabetes and controls. METHODS:We analyzed the gut bacterial microbiome, plasma SCFAs, small intestinal permeability and dietary intake in 47 children with islet autoimmunity or recent-onset type 1 diabetes and in 41 unrelated or sibling controls over a median (range) of 13 (2-34) months follow-up. RESULTS:Children with multiple islet autoantibodies (≥2 IA) or type 1 diabetes had gut microbiome dysbiosis. Anti-inflammatory Prevotella and Butyricimonas genera were less abundant and these changes were not explained by differences in diet. Small intestinal permeability measured by blood lactulose:rhamnose ratio was higher in type 1 diabetes. Children with ≥2 IA who progressed to type 1 diabetes (progressors), compared to those who did not progress, had higher intestinal permeability (mean [SE] difference +5.14 [2.0], 95% confidence interval [CI] 1.21, 9.07, P = .006), lower within-sample (alpha) microbial diversity (31.3 [11.2], 95% CI 9.3, 53.3, P = .005), and lower abundance of SCFA-producing bacteria. Alpha diversity (observed richness) correlated with plasma acetate levels in all groups combined (regression coefficient [SE] 0.57 [0.21], 95% CI 0.15, 0.99 P = .008). CONCLUSIONS/INTERPRETATION:Children with ≥2 IA who progress to diabetes, like those with recent-onset diabetes, have gut microbiome dysbiosis associated with increased intestinal permeability. Interventions that expand gut microbial diversity, in particular SCFA-producing bacteria, may have a role to decrease progression to diabetes in children at-risk.Lynne C. Giles, Cuong D. Tran ... Megan A. Penno, Rebecca L. Thomson ... Simon C Barry ... Jennifer J. Couper ... et al

    Parallel recovery of chromatin accessibility and gene expression dynamics from frozen human regulatory T cells

    No full text
    Epigenetic features such as DNA accessibility dictate transcriptional regulation in a cell type- and cell state- specific manner, and mapping this in health vs. disease in clinically relevant material is opening the door to new mechanistic insights and new targets for therapy. Assay for Transposase Accessible Chromatin Sequencing (ATAC-seq) allows chromatin accessibility profiling from low cell input, making it tractable on rare cell populations, such as regulatory T (Treg) cells. However, little is known about the compatibility of the assay with cryopreserved rare cell populations. Here we demonstrate the robustness of an ATAC-seq protocol comparing primary Treg cells recovered from fresh or cryopreserved PBMC samples, in the steady state and in response to stimulation. We extend this method to explore the feasibility of conducting simultaneous quantitation of chromatin accessibility and transcriptome from a single aliquot of 50,000 cryopreserved Treg cells. Profiling of chromatin accessibility and gene expression in parallel within the same pool of cells controls for cellular heterogeneity and is particularly beneficial when constrained by limited input material. Overall, we observed a high correlation of accessibility patterns and transcription factor dynamics between fresh and cryopreserved samples. Furthermore, highly similar transcriptomic profiles were obtained from whole cells and from the supernatants recovered from ATAC-seq reactions. We highlight the feasibility of applying these techniques to profile the epigenomic landscape of cells recovered from cryopreservation biorepositories.Ying Y. Wong, Jessica E. Harbison, Christopher M. Hope, BatjargalGundsambuu, KatherineA. Brown, SoonW. Wong, CherylY Brown, Jennifer J. Couper, Jimmy Breen, Ning Liu, Stephen M. Pederson, Maren Köhne, Kathrin Klee, Joachim Schultze, Marc Beyer, Timothy Sadlon, Simon C. Barr
    corecore