4 research outputs found

    Development and validation of novel and quantitative MRI methods for cancer evaluation

    Get PDF
    Quantitative imaging biomarkers (QIB) offer the opportunity to further the evaluation of cancer at presentation as well as predict response to anti-cancer therapies before and early during treatment with the ultimate goal of truly personalised medical care and the mitigation of futile, often detrimental, therapy. Few QIBs are successfully translated into clinical practice and there is increasing recognition that rigorous methodologies and standardisation of research pipelines and techniques are required to move a theoretically useful biomarker into the clinic. To this end, I have aimed to give an overview of what I believe to be some of key elements within the research field beginning with the concept of imaging biomarkers, introducing concepts in development and validation, before providing a summary of the current and future utility of a range of quantitative MR imaging biomarkers techniques within the oncological imaging field. The original, prospective, research moves from the technical and analytical validation of a novel QIB use (T1 mapping in cancer), first in vivo qualification of this biomarker in cancer patient response assessment and prediction (sarcoma and breast cancer as well as prostate cancer separately), and then moving on to application of more established QIBs in cancer evaluation (R2*/BOLD imaging in head and neck cancer) as well as how existing MR data can be post-processed to improved cancer evaluation (further metrics derived from diffusion weighted imaging in head and neck cancer and textural analysis of existing clinical MR images utility in prostate cancer detection)
    corecore