123 research outputs found

    An experimental setup combining a highly sensitive detector forreaction products with a mass-selected cluster source andalow-temperature STM for advanced nanocatalysis measurements

    Get PDF
    We report on a home-built detector for catalytic reaction measurements offering good gas isolation from the surrounding ultrahigh vacuum components, high sensitivity for reaction products and a fast response time of 10ms enabling dynamic studies correlated to reactant gas pulses. The device is mounted in ultrahigh vacuum and combined with a low-temperature scanning tunneling microscope and a source for the deposition of mass-selected clusters. This combination allows for a direct correlation between surface morphology and catalytic properties of model catalysts. The performances of the new detector are illustrated by measurements on two model systems. Thermal desorption spectroscopy of CO carried out on morphologically well characterized Pt on TiO2(110)-(1×1) reveals several desorption features, which can be attributed to different surface sites. Catalytic CO oxidation performed by alternatingly pulsing isotopic CO and O2 on a Pt film on yttria stabilized zirconia reveals the CO or O rich temperature regimes. The CO2 production rate correlated with either one of the reactants can perfectly be reproduced by a kinetic reaction model giving access to the respective adsorption energie

    The prolate-to-oblate shape transition of phospholipid vesicles in response to frequency variation of an AC electric field can be explained by the dielectric anisotropy of a phospholipid bilayer

    Full text link
    The external electric field deforms flaccid phospholipid vesicles into spheroidal bodies, with the rotational axis aligned with its direction. Deformation is frequency dependent: in the low frequency range (~ 1 kHz), the deformation is typically prolate, while increasing the frequency to the 10 kHz range changes the deformation to oblate. We attempt to explain this behaviour with a theoretical model, based on the minimization of the total free energy of the vesicle. The energy terms taken into account include the membrane bending energy and the energy of the electric field. The latter is calculated from the electric field via the Maxwell stress tensor, where the membrane is modelled as anisotropic lossy dielectric. Vesicle deformation in response to varying frequency is calculated numerically. Using a series expansion, we also derive a simplified expression for the deformation, which retains the frequency dependence of the exact expression and may provide a better substitute for the series expansion used by Winterhalter and Helfrich, which was found to be valid only in the limit of low frequencies. The model with the anisotropic membrane permittivity imposes two constraints on the values of material constants: tangential component of dielectric permittivity tensor of the phospholipid membrane must exceed its radial component by approximately a factor of 3; and the membrane conductivity has to be relatively high, approximately one tenth of the conductivity of the external aqueous medium.Comment: 17 pages, 6 figures; accepted for publication in J. Phys.: Condens. Matte

    Surface mobility of Ag on Pd(100) measured by specular helium scattering

    Get PDF
    We study the deposition and the very first steps of nucleation and growth of Ag on Pd(100) with thermal energy atom scattering. This technique is a very sensitive and nonperturbing probe to surface point defects, which permits an in situ and in-time monitoring of the deposition. The intention of this paper is to give a detailed description of the approach used in our work. The form of the specularly reflected helium signal as a function of coverage and surface temperature is compared to a theoretical curve, which is computed by solving a system of rate equations that describe the formation and destruction of clusters during the deposition process. The analysis of the experimental data gives two main results. The diffusion parameters (activation barrier E/sub d/=0.37+or-0.03 eV and preexponential factor nu /sub 0/=8*10/sup 9/ s/sup -1/) have been extracted for the system Ag on Pd(100). We find furthermore that all silver atoms impinging on a zone of 6.1 AA around an adatom on the surface are captured by it at surface temperatures well below the onset of thermally activated mobility. The origin of this phenomenon is discussed and tentatively assigned to a combined effect of transient and neighbor driven mobility

    Ag8 Fluorescence in Argon

    Get PDF
    The fluorescence of Ag8 in an argon matrix and in argon droplets is reported. This is the first unambiguous assignment of the fluorescence of a metal cluster larger than the tetramer, indicating that the excited state lifetime is longer than previously thought. It is discussed as a possible result of a matrix cage effect. The excitation spectrum is compared with two-photon-ionization measurements of Ag8 in helium droplets and to known absorption data. The agreement is excellent. We propose that the excited states relax rapidly through vibrational coupling to a long-lived state, from which the fluorescence occurs

    Descriptions of membrane mechanics from microscopic and effective two-dimensional perspectives

    Full text link
    Mechanics of fluid membranes may be described in terms of the concepts of mechanical deformations and stresses, or in terms of mechanical free-energy functions. In this paper, each of the two descriptions is developed by viewing a membrane from two perspectives: a microscopic perspective, in which the membrane appears as a thin layer of finite thickness and with highly inhomogeneous material and force distributions in its transverse direction, and an effective, two-dimensional perspective, in which the membrane is treated as an infinitely thin surface, with effective material and mechanical properties. A connection between these two perspectives is then established. Moreover, the functional dependence of the variation in the mechanical free energy of the membrane on its mechanical deformations is first studied in the microscopic perspective. The result is then used to examine to what extent different, effective mechanical stresses and forces can be derived from a given, effective functional of the mechanical free energy.Comment: 37 pages, 3 figures, minor change

    Optical absorption of small copper clusters in neon: Cu-n, (n=1-9)

    Get PDF
    We present optical absorption spectra in the UV-visible range (1.6 eV omega < 5.5 eV) of mass selected neutral copper clusters Cu-n(n = 1-9) embedded in a solid neon matrix at 7 K. The atom and the dimer have already been measured in neon matrices, while the absorption spectra for sizes between Cu-3 and Cu-9 are entirely (n = 6-9) or in great part new. They show a higher complexity and a larger number of transitions distributed over the whole energy range compared to similar sizes of silver clusters. The experimental spectra are compared to the time dependent density functional theory (TD-DFT) implemented in the TURBOMOLE package. The analysis indicates that for energies larger than 3 eV the transitions are mainly issued from d-type states; however, the TD-DFT scheme does not reproduce well the detailed structure of the absorption spectra. Below 3 eV the agreement for transitions issued from s-type states is better. (C) 2011 American Institute of Physics. [doi:10.1063/1.3552077

    UV-visible absorption of small gold clusters in neon: Au-n (n=1-5 and 7-9)

    Get PDF
    We present optical absorption spectra in the UV-visible range (1.5 eV < E < 6 eV) for mass selected neutral gold clusters Au-n (n = 1-5 and 7-9) embedded in solid Ne at 7 K. The experimental spectra are compared with time-dependent density functional calculations. Electronic transitions are distributed over the whole energy range without any concentration of the oscillator strength in a small energy window, characteristic for the more s-like metals such as the alkalis or silver. Contrary to the case of silver and partly copper clusters, transitions issued from mainly d-type states are significantly involved in low energy transitions. The measured integrated cross section is smaller (<20%) than expected from a free-electron system, manifesting the strong screening of the s electrons due to the proximity of the s and d levels in gold. (C) 2011 American Institute of Physics. [doi:10.1063/1.3537739
    • …
    corecore