184 research outputs found

    Neutrophil Secretion Induced by an Intracellular Ca(2+) Rise and Followed by Whole-Cell Patch-Clamp Recordings Occurs Without any Selective Mobilization of Different Granule Populations

    Get PDF
    We have investigated calcium-induced secretion in human neutrophils, using a whole-cell patch-clamp technique. Mobilization of subcellular granules to the cell membrane was followed as the change in membrane capacitance (ΔC(m)). Both the magnitude and the kinetics of the response differed between low and high concentrations of Ca(2+). A sustained secretion following a short lag phase was induced by high concentrations of Ca(2+) (100 μM and higher). A stable plateau was reached after 5–7 minutes at ΔC(m) values corresponding to values expected after all specific as well as azurophil granules have been mobilized. Capacitance values of the same magnitude could be obtained also at lower Ca(2+) concentrations, but typically no stable plateau was reached within the measuring time. In contrast to previous studies, we were unable to detect any pattern of secretion corresponding to a distinct submaximal response or selective mobilization of granule subsets specified by their Ca(2+)-sensitivity

    Recurrent herpes zoster in the Shingles Prevention Study: Are second episodes caused by the same varicella-zoster virus strain?

    Get PDF
    Herpes zoster (HZ) is caused by reactivation of varicella zoster virus (VZV) that established latency in sensory and autonomic neurons during primary infection. In the Shingles Prevention Study (SPS), a large efficacy trial of live attenuated Oka/Merck zoster vaccine (ZVL), PCR-confirmed second episodes of HZ occurred in two of 660 placebo and one of 321 ZVL recipients with documented HZ during a mean follow-up of 3.13 years. An additional two ZVL recipients experienced a second episode of HZ in the Long-Term Persistence Substudy. All episodes of HZ were caused by wild-type VZV. The first and second episodes of HZ occurred in different dermatomes in each of these five participants, with contralateral recurrences in two. Time between first and second episodes ranged from 12 to 28 months. One of the five participants, who was immunocompetent on study enrollment, was immunocompromised at the onset of his first and second episodes of HZ. VZV DNA isolated from rash lesions from the first and second episodes of HZ was used to sequence the full-length VZV genomes. For the unique-sequence regions of the VZV genome, we employed target enrichment of VZV DNA, followed by deep sequencing. For the reiteration regions, we used PCR amplification and Sanger sequencing. Our analysis and comparison of the VZV genomes from the first and second episodes of HZ in each of the five participants indicate that both episodes were caused by the same VZV strain. This is consistent with the extraordinary stability of VZV during the replication phase of varicella and the subsequent establishment of latency in sensory ganglia throughout the body. Our observations also indicate that VZV is stable during the persistence of latency and the subsequent reactivation and replication that results in HZ
    corecore