328 research outputs found
Colletotrichum orbiculare FAM1 Encodes a Novel Woronin Body-Associated Pex22 Peroxin Required for Appressorium-Mediated Plant Infection
ABSTRACT The cucumber anthracnose fungus Colletotrichum orbiculare forms specialized cells called appressoria for host penetration. We identified a gene, FAM1, encoding a novel peroxin protein that is essential for peroxisome biogenesis and that associates with Woronin bodies (WBs), dense-core vesicles found only in filamentous ascomycete fungi which function to maintain cellular integrity. The fam1 disrupted mutants were unable to grow on medium containing oleic acids as the sole carbon source and were nonpathogenic, being defective in both appressorium melanization and host penetration. Fluorescent proteins carrying peroxisomal targeting signals (PTSs) were not imported into the peroxisomes of fam1 mutants, suggesting that FAM1 is a novel peroxisomal biogenesis gene (peroxin). FAM1 did not show significant homology to any Saccharomyces cerevisiae peroxins but resembled conserved filamentous ascomycete-specific Pex22-like proteins which contain a predicted Pex4-binding site and are potentially involved in recycling PTS receptors from peroxisomes to the cytosol. C. orbiculare FAM1 complemented the peroxisomal matrix protein import defect of the S. cerevisiae pex22 mutant. Confocal microscopy of Fam1-GFP (green fluorescent protein) fusion proteins and immunoelectron microscopy with anti-Fam1 antibodies showed that Fam1 localized to nascent WBs budding from peroxisomes and mature WBs. Association of Fam1 with WBs was confirmed by colocalization with WB matrix protein CoHex1 (C. orbiculare Hex1) and WB membrane protein CoWsc (C. orbiculare Wsc) and by subcellular fractionation and Western blotting with antibodies to Fam1 and CoHex1. In WB-deficient cohex1 mutants, Fam1 was redirected to the peroxisome membrane. Our results show that Fam1 is a WB-associated peroxin required for pathogenesis and raise the possibility that localized receptor recycling occurs in WBs. IMPORTANCE Colletotrichum orbiculare is a fungus causing damaging disease on Cucurbitaceae plants. In this paper, we characterize a novel peroxisome biogenesis gene from this pathogen called FAM1. Although no genes with significant homology are present in Saccharomyces cerevisiae, FAM1 contains a predicted Pex4-binding site typical of Pex22 proteins, which function in the recycling of PTS receptors from peroxisomes to the cytosol. We show that FAM1 complements the defect in peroxisomal matrix protein import of S. cerevisiae pex22 mutants and that fam1 mutants are completely defective in peroxisome function, fatty acid metabolism, and pathogenicity. Remarkably, we found that this novel peroxin is specifically localized on the bounding membrane of Woronin bodies, which are small peroxisome-derived organelles unique to filamentous ascomycete fungi that function in septal pore plugging. Our finding suggests that these fungi have coopted the Woronin body for localized receptor recycling during matrix protein import
Doublet-Triplet Splitting and Fermion Masses with Extra Dimensions
The pseudo-Goldstone boson mechanism for the ``doublet-triplet splitting''
problem of the grand unified theory can be naturally implemented in the
scenario with extra dimensions and branes. The two SU(6) global symmetries of
the Higgs sector are located on two separate branes while the SU(6) gauge
symmetry is in the bulk. After including several vector-like fields in the
bulk, and allowing the most general interactions with their natural strength
(including the higher dimensional ones which may be generated by gravity) which
are consistent with the geometry, a realistic pattern of the Standard Model
fermion masses and mixings can be naturally obtained without any flavor
symmetry. Neutrino masses and mixings required for the solar and atmospheric
neutrino problems can also be accommodated. The geometry of extra dimensions
and branes provides another way to realize the absence of certain interactions
(as required in the pseudo-Goldstone boson mechanism) or the smallness of some
couplings (e.g., the Yukawa couplings between the fermions and the Higgs
bosons), in addition to the usual symmetry arguments.Comment: 16 pages, 4 figures, LaTeX, references and some clarifying remarks
added, to be published in Phys. Rev.
Identification of candidate anti-cancer molecular mechanisms of compound kushen injection using functional genomics
Compound Kushen Injection (CKI) has been clinically used in China for over 15 years to treat various types of solid tumours. However, because such Traditional Chinese Medicine (TCM) preparations are complex mixtures of plant secondary metabolites, it is essential to explore their underlying molecular mechanisms in a systematic fashion. We have used the MCF-7 human breast cancer cell line as an initial in vitro model to identify CKI induced changes in gene expression. Cells were treated with CKI for 24 and 48 hours at two concentrations (1 and 2 mg/mL total alkaloids), and the effect of CKI on cell proliferation and apoptosis were measured using XTT and Annexin V/Propidium Iodide staining assays respectively. Transcriptome data of cells treated with CKI or 5-Fluorouracil (5-FU) for 24 and 48 hours were subsequently acquired using high-throughput Illumina RNA-seq technology. In this report we show that CKI inhibited MCF-7 cell proliferation and induced apoptosis in a dose-dependent fashion. We integrated and applied a series of transcriptome analysis methods, including gene differential expression analysis, pathway over-representation analysis, de novo identification of long non-coding RNAs (lncRNA) as well as co-expression network reconstruction, to identify candidate anti-cancer molecular mechanisms of CKI. Multiple pathways were perturbed and the cell cycle was identified as the potential primary target pathway of CKI in MCF-7 cells. CKI may also induce apoptosis in MCF-7 cells via a p53 independent mechanism. In addition, we identified novel lncRNAs and showed that many of them might be expressed as a response to CKI treatment.Zhipeng Qu, Jian Cui, Yuka Harata-Lee, Thazin Nwe Aung, Qianjin Feng, Joy M. Raison, Robert Daniel Kortschak, David L. Adelso
Multiple functions of CXCL12 in a syngeneic model of breast cancer
BACKGROUND: A growing body of work implicates chemokines, in particular CXCL12 and its receptors, in the progression and site-specific metastasis of various cancers, including breast cancer. Various agents have been used to block the CXCL12-CXCR4 interaction as a means of inhibiting cancer metastasis. However, as a potent chemotactic factor for leukocytes, CXCL12 also has the potential to enhance anti-cancer immunity. To further elucidate its role in breast cancer progression, CXCL12 and its antagonist CXCL12(P2G) were overexpressed in the syngeneic 4T1.2 mouse model of breast carcinoma. RESULTS: While expression of CXCL12(P2G) significantly inhibited metastasis, expression of wild-type CXCL12 potently inhibited both metastasis and primary tumor growth. The effects of wild-type CXCL12 were attributed to an immune response characterized by the induction of CD8+ T cell activity, enhanced cell-mediated cytotoxicity, increased numbers of CD11c+ cells in the tumor-draining lymph nodes and reduced accumulation of myeloid-derived suppressor cells in the spleen.CONCLUSIONS: This study highlights the need to consider carefully therapeutic strategies that block CXCL12 signaling. Therapies that boost CXCL12 levels at the primary tumor site may prove more effective in the treatment of metastatic breast cancer.Sharon A Williams, Yuka Harata-Lee, Iain Comerford, Robin L Anderson, Mark J Smyth and Shaun R McCol
Neutrino oscillation experiments and limits on lepton-number and lepton-flavor violating processes
Using a three neutrino framework we investigate bounds for the effective
Majorana neutrino mass matrix. The mass measured in neutrinoless double beta
decay is its (11) element. Lepton-number and -flavor violating processes
sensitive to each element are considered and limits on branching ratios or
cross sections are given. Those processes include conversion, or recently proposed high-energy scattering processes at
HERA. Including all possible mass schemes, the three solar solutions and other
allowed possibilities, there is a total of 80 mass matrices. The obtained
indirect limits are up to 14 orders of magnitude more stringent than direct
ones. It is investigated how neutrinoless double beta decay may judge between
different mass and mixing schemes as well as solar solutions. Prospects for
detecting processes depending on elements of the mass matrix are also
discussed.Comment: 16 pages, 2 figure
Multivalent binding of PWWP2A to H2A.Z regulates mitosis and neural crest differentiation
Replacement of canonical histones with specialized histone variants promotes altering of chromatin structure and function. The essential histone variant H2A.Z affects various DNA-based processes via poorly understood mechanisms. Here, we determine the comprehensive interactome of H2A.Z and identify PWWP2A as a novel H2A.Z-nucleosome binder. PWWP2A is a functionally uncharacterized, vertebrate-specific protein that binds very tightly to chromatin through a concerted multivalent binding mode. Two internal protein regions mediate H2A.Z-specificity and nucleosome interaction, whereas the PWWP domain exhibits direct DNA binding. Genome-wide mapping reveals that PWWP2A binds selectively to H2A.Z-containing nucleosomes with strong preference for promoters of highly transcribed genes. In human cells, its depletion affects gene expression and impairs proliferation via a mitotic delay. While PWWP2A does not influence H2A.Z occupancy, the C-terminal tail of H2A.Z is one important mediator to recruit PWWP2A to chromatin. Knockdown of PWWP2A in Xenopus results in severe cranial facial defects, arising from neural crest cell differentiation and migration problems. Thus, PWWP2A is a novel H2A.Z-specific multivalent chromatin binder providing a surprising link between H2A.Z, chromosome segregation, and organ development
Determining the neurotransmitter concentration profile at active synapses
Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission
A preferentially segregated recycling vesicle pool of limited size supports neurotransmission in native central synapses
At small central synapses, efficient turnover of vesicles is crucial for stimulus-driven transmission, but how the structure of this recycling pool relates to its functional role remains unclear. Here we characterize the organizational principles of functional vesicles at native hippocampal synapses with nanoscale resolution using fluorescent dye labeling and electron microscopy. We show that the recycling pool broadly scales with the magnitude of the total vesicle pool, but its average size is small (∼45 vesicles), highly variable, and regulated by CDK5/calcineurin activity. Spatial analysis demonstrates that recycling vesicles are preferentially arranged near the active zone and this segregation is abolished by actin stabilization, slowing the rate of activity-driven exocytosis. Our approach reveals a similarly biased recycling pool distribution at synapses in visual cortex activated by sensory stimulation in vivo. We suggest that in small native central synapses, efficient release of a limited pool of vesicles relies on their favored spatial positioning within the termina
- …