15,819 research outputs found
Triaxial projected shell model approach
The projected shell model analysis is carried out using the triaxial
Nilsson+BCS basis. It is demonstrated that, for an accurate description of the
moments of inertia in the transitional region, it is necessary to take the
triaxiality into account and perform the three-dimensional angular-momentum
projection from the triaxial Nilsson+BCS intrinsic wavefunction.Comment: 9 pages, 2 figure
Varied Signature Splitting Phenomena in Odd Proton Nuclei
Varied signature splitting phenomena in odd proton rare earth nuclei are
investigated. Signature splitting as functions of and in the angular
momentum projection theory is explicitly shown and compared with those of the
particle rotor model. The observed deviations from these rules are due to the
band mixings. The recently measured Ta high spin data are taken as a
typical example where fruitful information about signature effects can be
extracted. Six bands, two of which have not yet been observed, were calculated
and discussed in detail in this paper. The experimentally unknown band head
energies are given
Anomalous Crossing Frequency in Odd Proton Nuclei
A generic explanation for the recently observed anomalous crossing
frequencies in odd proton rare earth nuclei is given. As an example, the proton
band in Ta is discussed in detail by using the
angular momentum projection theory. It is shown that the quadrupole pairing
interaction is decisive in delaying the crossing point and the changes in
crossing frequency along the isotope chain are due to the different neutron
shell fillings
Experimental determination of the turbulence in a liquid rocket combustion chamber
The intensity of turbulence and the Lagrangian correlation coefficient for a liquid rocket combustion chamber were determined experimentally using the tracer gas diffusion method. The results indicate that the turbulent diffusion process can be adequately modeled by the one-dimensional Taylor theory; however, the numerical values show significant disagreement with previously accepted values. The intensity of turbulence is higher by a factor of about two, while the Lagrangian correlation coefficient which was assumed to be unity in the past is much less than unity
Observation and Modeling of Coronal "Moss" With the EUV Imaging Spectrometer on Hinode
Observations of transition region emission in solar active regions represent
a powerful tool for determining the properties of hot coronal loops. In this
Letter we present the analysis of new observations of active region moss taken
with the Extreme Ultraviolet Imaging Spectrometer (EIS) on the \textit{Hinode}
mission. We find that the intensities predicted by steady, uniformly heated
loop models are too intense relative to the observations, consistent with
previous work. To bring the model into agreement with the observations a
filling factor of about 16% is required. Furthermore, our analysis indicates
that the filling factor in the moss is nonuniform and varies inversely with the
loop pressure
The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion
For independent nearest-neighbour bond percolation on Z^d with d >> 6, we
prove that the incipient infinite cluster's two-point function and three-point
function converge to those of integrated super-Brownian excursion (ISE) in the
scaling limit. The proof is based on an extension of the new expansion for
percolation derived in a previous paper, and involves treating the magnetic
field as a complex variable. A special case of our result for the two-point
function implies that the probability that the cluster of the origin consists
of n sites, at the critical point, is given by a multiple of n^{-3/2}, plus an
error term of order n^{-3/2-\epsilon} with \epsilon >0. This is a strong
statement that the critical exponent delta is given by delta =2.Comment: 56 pages, 3 Postscript figures, in AMS-LaTeX, with graphicx, epic,
and xr package
Theoretical study of the (3x2) reconstruction of beta-SiC(001)
By means of ab initio molecular dynamics and band structure calculations, as
well as using calculated STM images, we have singled out one structural model
for the (3x2) reconstruction of the Si-terminated (001) surface of cubic SiC,
amongst several proposed in the literature. This is an alternate dimer-row
model, with an excess Si coverage of 1/3, yielding STM images in good accord
with recent measurements [F.Semond et al. Phys. Rev. Lett. 77, 2013 (1996)].Comment: To be published in PRB Rapid. Com
Wave Boundary Layer Turbulence over Surface Waves in a Strongly Forced Condition
Accurate predictions of the sea state–dependent air–sea momentum flux require a thorough understanding of the wave boundary layer turbulence over surface waves. A set of momentum and energy equations is derived to formulate and analyze wave boundary layer turbulence. The equations are written in wave-following coordinates, and all variables are decomposed into horizontal mean, wave fluctuation, and turbulent fluctuation. The formulation defines the wave-induced stress as a sum of the wave fluctuation stress (because of the fluctuating velocity components) and a pressure stress (pressure acting on a tilted surface). The formulations can be constructed with different choices of mapping. Next, a large-eddy simulation result for wind over a sinusoidal wave train under a strongly forced condition is analyzed using the proposed formulation. The result clarifies how surface waves increase the effective roughness length and the drag coefficient. Specifically, the enhanced wave-induced stress close to the water surface reduces the turbulent stress (satisfying the momentum budget). The reduced turbulent stress is correlated with the reduced viscous dissipation rate of the turbulent kinetic energy. The latter is balanced by the reduced mean wind shear (satisfying the energy budget), which causes the equivalent surface roughness to increase. Interestingly, there is a small region farther above where the turbulent stress, dissipation rate, and mean wind shear are all enhanced. The observed strong correlation between the turbulent stress and the dissipation rate suggests that existing turbulence closure models that parameterize the latter based on the former are reasonably accurate
Hinode EUV Imaging Spectrometer Observations of Solar Active Region Dynamics
The EUV Imaging Spectrometer (EIS) on the Hinode satellite is capable of
measuring emission line center positions for Gaussian line profiles to a
fraction of a spectral pixel, resulting in relative solar Doppler-shift
measurements with an accuracy of less than a km/s for strong lines. We show an
example of the application of that capability to an active region sit-and-stare
observation in which the EIS slit is placed at one location on the Sun and many
exposures are taken while the spacecraft tracking keeps the same solar location
within the slit. For the active region examined (NOAA 10930), we find that
significant intensity and Doppler-shift fluctuations as a function of time are
present at a number of locations. These fluctuations appear to be similar to
those observed in high-temperature emission lines with other space-borne
spectroscopic instruments. With its increased sensitivity over earlier
spectrometers and its ability to image many emission lines simultaneously, EIS
should provide significant new constraints on Doppler-shift oscillations in the
corona.Comment: 7 Pages, 7 figure
Transition region features observed with Hinode/EIS
Two types of active region feature prominent at transition region
temperatures are identified in Hinode/EIS data of AR 10938 taken on 2007
January 20. The footpoints of 1 MK TRACE loops are shown to emit strongly in
emission lines formed at log T=5.4-5.8, allowing the temperature increase along
the footpoints to be clearly seen. A density diagnostic of Mg VII yields the
density in the footpoints, with one loop showing a decrease from 3x10^9 cm^-3
at the base to 1.5x10^9 cm^-3 at a projected height of 20 Mm. The second
feature is a compact active region transition region brightening which is
particularly intense in O V emission (log T=5.4) but also has a signature at
temperatures up to log T=6.3. The Mg VII diagnostic gives a density of 4x10^10
cm^-3, and emission lines of Mg VI and Mg VII show line profiles broadened by
50 km/s and wings extending beyond 200 km/s. Continuum emission in the short
wavelength band is also found to be enhanced, and is suggested to be free-bound
emission from recombination onto He^+.Comment: 11 pages, 9 figures, submitted to PASJ Hinode first results issu
- …