136 research outputs found

    Antigen-Specific Polyclonal Cytotoxic T Lymphocytes Induced by Fusions of Dendritic Cells and Tumor Cells

    Get PDF
    The aim of cancer vaccines is induction of tumor-specific cytotoxic T lymphocytes (CTLs) that can reduce the tumor mass. Dendritic cells (DCs) are potent antigen-presenting cells and play a central role in the initiation and regulation of primary immune responses. Thus, DCs-based vaccination represents a potentially powerful strategy for induction of antigen-specific CTLs. Fusions of DCs and whole tumor cells represent an alternative approach to deliver, process, and subsequently present a broad spectrum of antigens, including those known and unidentified, in the context of costimulatory molecules. Once DCs/tumor fusions have been infused back into patient, they migrate to secondary lymphoid organs, where the generation of antigen-specific polyclonal CTL responses occurs. We will discuss perspectives for future development of DCs/tumor fusions for CTL induction.Grants-in-Aid for Scientific Research from the Ministry of Education, Cultures, Sports, Science and Technology of Japan, Grant-in-Aid of the Japan Medical Association, Takeda Science Foundation, Pancreas Research Foundation of Japan, The Promotion and Mutual Aid Corporation for Private School of Japan and Foundation for Promotion of Cancer Researc

    Regulation of Tumor Immunity by Tumor/Dendritic Cell Fusions

    Get PDF
    The goal of cancer vaccines is to induce antitumor immunity that ultimately will reduce tumor burden in tumor environment. Several strategies involving dendritic cells- (DCs)- based vaccine incorporating different tumor-associated antigens to induce antitumor immune responses against tumors have been tested in clinical trials worldwide. Although DCs-based vaccine such as fusions of whole tumor cells and DCs has been proven to be clinically safe and is efficient to enhance antitumor immune responses for inducing effective immune response and for breaking T-cell tolerance to tumor-associated antigens (TAAs), only a limited success has occurred in clinical trials. This paper reviews tumor immune escape and current strategies employed in the field of tumor/DC fusions vaccine aimed at enhancing activation of TAAs-specific cytotoxic T cells in tumor microenvironment.Foundation for the Promotion of Cancer Research; Mitsui Life Social Welfare Foundation; Grants-in-Aid for Scientific Research from the Ministry of Education, Cultures, Sports, Science, and Technology of Japan; Grant-in-Aid of the Japan Medical Association; Takeda Science Foundation; Pancreas Research Foundation of Japa

    Cancer Vaccine by Fusions of Dendritic and Cancer Cells

    Get PDF
    Dendritic cells (DCs) are potent antigen-presenting cells and play a central role in the initiation and regulation of primary immune responses. Therefore, their use for the active immunotherapy against cancers has been studied with considerable interest. The fusion of DCs with whole tumor cells represents in many ways an ideal approach to deliver, process, and subsequently present a broad array of tumor-associated antigens, including those yet to be unidentified, in the context of DCs-derived costimulatory molecules. DCs/tumor fusion vaccine stimulates potent antitumor immunity in the animal tumor models. In the human studies, T cells stimulated by DC/tumor fusion cells are effective in lysis of tumor cells that are used as the fusion partner. In the clinical trials, clinical and immunological responses were observed in patients with advanced stage of malignant tumors after being vaccinated with DC/tumor fusion cells, although the antitumor effect is not as vigorous as in the animal tumor models. This review summarizes recent advances in concepts and techniques that are providing new impulses to DCs/tumor fusions-based cancer vaccination

    In vivo induction of activin A-producing alveolar macrophages supports the progression of lung cell carcinoma

    Get PDF
    Alveolar macrophages (AMs) are crucial for maintaining normal lung function. They are abundant in lung cancer tissues, but their pathophysiological significance remains unknown. Here we show, using an orthotopic murine lung cancer model and human carcinoma samples, that AMs support cancer cell proliferation and thus contribute to unfavourable outcome. Inhibin beta A (INHBA) expression is upregulated in AMs under tumor-bearing conditions, leading to the secretion of activin A, a homodimer of INHBA. Accordingly, follistatin, an antagonist of activin A is able to inhibit lung cancer cell proliferation. Single-cell RNA sequence analysis identifies a characteristic subset of AMs specifically induced in the tumor environment that are abundant in INHBA, and distinct from INHBA-expressing AMs in normal lungs. Moreover, postnatal deletion of INHBA/activin A could limit tumor growth in experimental models. Collectively, our findings demonstrate the critical pathological role of activin A-producing AMs in tumorigenesis, and provides means to clearly distinguish them from their healthy counterparts.Taniguchi S., Matsui T., Kimura K., et al. In vivo induction of activin A-producing alveolar macrophages supports the progression of lung cell carcinoma. Nature Communications 14, 143 (2023); https://doi.org/10.1038/s41467-022-35701-8

    In vitro generation of cytotoxic and regulatory T cells by fusions of human dendritic cells and hepatocellular carcinoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human hepatocellular carcinoma (HCC) cells express WT1 and/or carcinoembryonic antigen (CEA) as potential targets for the induction of antitumor immunity. In this study, generation of cytotoxic T lymphocytes (CTL) and regulatory T cells (Treg) by fusions of dendritic cells (DCs) and HCC cells was examined.</p> <p>Methods</p> <p>HCC cells were fused to DCs either from healthy donors or the HCC patient and investigated whether supernatants derived from the HCC cell culture (HCCsp) influenced on the function of DCs/HCC fusion cells (FCs) and generation of CTL and Treg.</p> <p>Results</p> <p>FCs coexpressed the HCC cells-derived WT1 and CEA antigens and DCs-derived MHC class II and costimulatory molecules. In addition, FCs were effective in activating CD4<sup>+ </sup>and CD8<sup>+ </sup>T cells able to produce IFN-γ and inducing cytolysis of autologous tumor or semiallogeneic targets by a MHC class I-restricted mechanism. However, HCCsp induced functional impairment of DCs as demonstrated by the down-regulation of MHC class I and II, CD80, CD86, and CD83 molecules. Moreover, the HCCsp-exposed DCs failed to undergo full maturation upon stimulation with the Toll-like receptor 4 agonist penicillin-inactivated <it>Streptococcus pyogenes</it>. Interestingly, fusions of immature DCs generated in the presence of HCCsp and allogeneic HCC cells promoted the generation of CD4<sup>+ </sup>CD25<sup>high </sup>Foxp3<sup>+ </sup>Treg and inhibited CTL induction in the presence of HCCsp. Importantly, up-regulation of MHC class II, CD80, and CD83 on DCs was observed in the patient with advanced HCC after vaccination with autologous FCs. In addition, the FCs induced WT1- and CEA-specific CTL that were able to produce high levels of IFN-γ.</p> <p>Conclusion</p> <p>The current study is one of the first demonstrating the induction of antigen-specific CTL and the generation of Treg by fusions of DCs and HCC cells. The local tumor-related factors may favor the generation of Treg through the inhibition of DCs maturation; however, fusion cell vaccination results in recovery of the DCs function and induction of antigen-specific CTL responses in vitro. The present study may shed new light about the mechanisms responsible for the generation of CTL and Treg by FCs.</p

    Diffusion des rayons γ du Co

    No full text
    corecore