1 research outputs found

    Generalized spatial aliasing solution for the dispersion analysis of infinitely periodic multilayered composites using the finite element method

    No full text
    The finite element (FE) method offers an efficient framework to investigate the evolution of phononic crystals which possess materials or geometric nonlinearity subject to external loading. Despite its superior efficiency, the FE method suffers from spectral distortions in the dispersion analysis of waves perpendicular to the layers in infinitely periodic multilayered composites. In this study, the analytical dispersion relation for sagittal elastic waves is reformulated in a substantially concise form, and it is employed to reproduce spatial aliasing-induced spectral distortions in FE dispersion relations. Furthermore, through an anti-aliasing condition and the effective elastic modulus theory, an FE modeling general guideline is provided to overcome the observed spectral distortions in FE dispersion relations of infinitely periodic multilayered composites, and its validity is also demonstrated.Qatar National Research Fund through Grant No. NPRP8-1568-2-666. Shim acknowledges start-up funds from the University at Buffalo (UB), and he is grateful to the support of UB Center for Computational Research
    corecore