12 research outputs found

    Analysis of adoption of conservation agriculture practices in southern Africa: mixed-methods approach

    Get PDF
    In southern Africa, conservation agriculture (CA) has been promoted to address low agricultural productivity, food insecurity, and land degradation. However, despite significant experimental evidence on the agronomic and economic benefits of CA and large scale investments by the donor community and national governments, adoption rates among smallholders remain below expectation. The main objective of this research project was thus to investigate why previous efforts and investments to scale CA technologies and practices in southern Africa have not led to widespread adoption. The paper applies a multivariate probit model and other methods to survey data from 4,373 households and 278 focus groups to identify the drivers and barriers of CA adoption in Malawi, Zambia, and Zimbabwe. The results show that declining soil fertility is a major constraint to maize production in Zambia and Malawi, and drought/heat is more pronounced in Zimbabwe. We also find gaps between (a) awareness and adoption, (b) training and adoption, and (c) demonstration and adoption rates of CA practices in all three countries. The gaps are much bigger between awareness and adoption and much smaller between hosting demonstration and adoption, suggesting that much of the awareness of CA practices has not translated to greater adoption. Training and demonstrations are better conduits to enhance adoption than mere awareness creation. Therefore, demonstrating the applications and benefits of CA practices is critical for promoting CA practices in all countries. Besides, greater adoption of CA practices requires enhancing farmers’ access to inputs, addressing drudgery associated with CA implementation, enhancing farmers’ technical know-how, and enacting and enforcing community bylaws regarding livestock grazing and wildfires. The paper concludes by discussing the implications for policy and investments in CA promotion

    Evaluating the relationship between ciprofloxacin prescription and non-susceptibility in Salmonella Typhi in Blantyre, Malawi: an observational study

    Get PDF
    Background Ciprofloxacin is the first-line drug for treating typhoid fever in many countries in Africa with a high disease burden, but the emergence of non-susceptibility poses a challenge to public health programmes. Through enhanced surveillance as part of vaccine evaluation, we investigated the occurrence and potential determinants of ciprofloxacin non-susceptibility in Blantyre, Malawi. Methods We conducted systematic surveillance of typhoid fever cases and antibiotic prescription in two health centres in Blantyre, Malawi, between Oct 1, 2016, and Oct 31, 2019, as part of the STRATAA and TyVAC studies. In addition, blood cultures were taken from eligible patients presenting at Queen Elizabeth Central Hospital, Blantyre, as part of routine diagnosis. Inclusion criteria were measured or reported fever, or clinical suspicion of sepsis. Microbiologically, we identified Salmonella enterica serotype Typhi (S Typhi) isolates with a ciprofloxacin non-susceptible phenotype from blood cultures, and used whole-genome sequencing to identify drug-resistance mutations and phylogenetic relationships. We constructed generalised linear regression models to investigate associations between the number of ciprofloxacin prescriptions given per month to study participants and the proportion of S Typhi isolates with quinolone resistance-determining region (QRDR) mutations in the following month. Findings From 46 989 blood cultures from Queen Elizabeth Central Hospital, 502 S Typhi isolates were obtained, 30 (6%) of which had either decreased ciprofloxacin susceptibility, or ciprofloxacin resistance. From 11 295 blood cultures from STRATAA and TyVAC studies, 241 microbiologically confirmed cases of typhoid fever were identified, and 198 isolates from 195 participants sequenced (mean age 12·8 years [SD 10·2], 53% female, 47% male). Between Oct 1, 2016, and Aug 31, 2019, of 177 typhoid fever cases confirmed by whole-genome sequencing, four (2%) were caused by S Typhi with QRDR mutations, compared with six (33%) of 18 cases between Sept 1 and Oct 31, 2019. This increase was associated with a preceding spike in ciprofloxacin prescriptions. Every additional prescription of ciprofloxacin given to study participants in the preceding month was associated with a 4·2% increase (95% CI 1·8–7·0) in the relative risk of isolating S Typhi with a QRDR mutation (p=0·0008). Phylogenetic analysis showed that S Typhi isolates with QRDR mutations from September and October, 2019, belonged to two distinct subclades encoding two different QRDR mutations, and were closely related (4–10 single-nucleotide polymorphisms) to susceptible S Typhi endemic to Blantyre. Interpretation We postulate a causal relationship between increased ciprofloxacin prescriptions and an increase in fluoroquinolone non-susceptibility in S Typhi. Decreasing ciprofloxacin use by improving typhoid diagnostics, and reducing typhoid fever cases through the use of an efficacious vaccine, could help to limit the emergence of resistance

    Development and Characterization of a Luminescence-Based High-Throughput Serum Bactericidal Assay (L-SBA) to Assess Bactericidal Activity of Human Sera against Nontyphoidal Salmonella

    Get PDF
    Salmonella Typhimurium and Salmonella Enteritidis are leading causative agents of invasive nontyphoidal Salmonella (iNTS) disease, which represents one of the major causes of death and morbidity in sub-Saharan Africa, still partially underestimated. Large sero-epidemiological studies are necessary to unravel the burden of disease and guide the introduction of vaccines that are not yet available. Even if no correlate of protection has been determined so far for iNTS, the evaluation of complement-mediated functionality of antibodies generated towards natural infection or elicited upon vaccination may represent a big step towards this achievement. Here we present the setup and the intra-laboratory characterization in terms of repeatability, intermediate precision, linearity, and specificity of a high-throughput luminescence-based serum bactericidal assay (L-SBA). This method could be useful to perform sero-epidemiological studies across iNTS endemic countries and for evaluation of antibodies raised against iNTS vaccine candidates in upcoming clinical trials

    Stepwise evolution of Salmonella Typhimurium ST313 causing bloodstream infection in Africa

    Get PDF
    Bloodstream infections caused by nontyphoidal Salmonella are a major public health concern in Africa, causing ~49,600 deaths every year. The most common Salmonella enterica pathovariant associated with invasive nontyphoidal Salmonella disease is Salmonella Typhimurium sequence type (ST)313. It has been proposed that antimicrobial resistance and genome degradation has contributed to the success of ST313 lineages in Africa, but the evolutionary trajectory of such changes was unclear. Here, to define the evolutionary dynamics of ST313, we sub-sampled from two comprehensive collections of Salmonella isolates from African patients with bloodstream infections, spanning 1966 to 2018. The resulting 680 genome sequences led to the discovery of a pan-susceptible ST313 lineage (ST313 L3), which emerged in Malawi in 2016 and is closely related to ST313 variants that cause gastrointestinal disease in the United Kingdom and Brazil. Genomic analysis revealed degradation events in important virulence genes in ST313 L3, which had not occurred in other ST313 lineages. Despite arising only recently in the clinic, ST313 L3 is a phylogenetic intermediate between ST313 L1 and L2, with a characteristic accessory genome. Our in-depth genotypic and phenotypic characterization identifies the crucial loss-of-function genetic events that occurred during the stepwise evolution of invasive S. Typhimurium across Africa

    Evaluating the relationship between ciprofloxacin prescription and non-susceptibility in Salmonella Typhi in Blantyre, Malawi: an observational study

    Get PDF
    Background Ciprofloxacin is the first-line drug for treating typhoid fever in many countries in Africa with a high disease burden, but the emergence of non-susceptibility poses a challenge to public health programmes. Through enhanced surveillance as part of vaccine evaluation, we investigated the occurrence and potential determinants of ciprofloxacin non-susceptibility in Blantyre, Malawi. Methods We conducted systematic surveillance of typhoid fever cases and antibiotic prescription in two health centres in Blantyre, Malawi, between Oct 1, 2016, and Oct 31, 2019, as part of the STRATAA and TyVAC studies. In addition, blood cultures were taken from eligible patients presenting at Queen Elizabeth Central Hospital, Blantyre, as part of routine diagnosis. Inclusion criteria were measured or reported fever, or clinical suspicion of sepsis. Microbiologically, we identified Salmonella enterica serotype Typhi (S Typhi) isolates with a ciprofloxacin non-susceptible phenotype from blood cultures, and used whole-genome sequencing to identify drug-resistance mutations and phylogenetic relationships. We constructed generalised linear regression models to investigate associations between the number of ciprofloxacin prescriptions given per month to study participants and the proportion of S Typhi isolates with quinolone resistance-determining region (QRDR) mutations in the following month. Findings From 46 989 blood cultures from Queen Elizabeth Central Hospital, 502 S Typhi isolates were obtained, 30 (6%) of which had either decreased ciprofloxacin susceptibility, or ciprofloxacin resistance. From 11 295 blood cultures from STRATAA and TyVAC studies, 241 microbiologically confirmed cases of typhoid fever were identified, and 198 isolates from 195 participants sequenced (mean age 12·8 years [SD 10·2], 53% female, 47% male). Between Oct 1, 2016, and Aug 31, 2019, of 177 typhoid fever cases confirmed by whole-genome sequencing, four (2%) were caused by S Typhi with QRDR mutations, compared with six (33%) of 18 cases between Sept 1 and Oct 31, 2019. This increase was associated with a preceding spike in ciprofloxacin prescriptions. Every additional prescription of ciprofloxacin given to study participants in the preceding month was associated with a 4·2% increase (95% CI 1·8–7·0) in the relative risk of isolating S Typhi with a QRDR mutation (p=0·0008). Phylogenetic analysis showed that S Typhi isolates with QRDR mutations from September and October, 2019, belonged to two distinct subclades encoding two different QRDR mutations, and were closely related (4–10 single-nucleotide polymorphisms) to susceptible S Typhi endemic to Blantyre. Interpretation We postulate a causal relationship between increased ciprofloxacin prescriptions and an increase in fluoroquinolone non-susceptibility in S Typhi. Decreasing ciprofloxacin use by improving typhoid diagnostics, and reducing typhoid fever cases through the use of an efficacious vaccine, could help to limit the emergence of resistance

    Assessment of Informal Cross Border Fish Trade in the Southern African Region: A case of Zambia and Malawi

    No full text
    Intra-regional fish trade has potential in addressing the region’s food and nutrition insecurity, as well as poverty reduction, by enabling movement of fish from countries of surplus to those with deficit. However, informal fish trade, just like all informal economic activities, has been overlooked and neglected in many national and regional policies, leading to obscurity of such an important part of the fisheries sector. This study examined the situation in the cross-border informal fish trade to deepen our understanding about the traders, the factors influencing the traders to use informal trade channels, the structure of the products traded and the challenges traders face, as well as propose policy direction to enhance the cross-border fish trade in the Southern Africa region. The study revealed that female traders dominated informal fish trade. In both Malawi and Zambia, an estimated 45,285.52 metric tonnes of fish valued at 82.14 million dollars and 102,263.9 metric tonnes of fish valued at 3.3 million dollars were informally traded. The key species involved in informal cross-border trade in Malawi and Zambia were the small pelagics, usipa (Engraulicypris sardella) from Lake Malawi and dagaa (Rastrineobola argentea) from Lake Tanganyika, respectively. It emerged from focus group discussions with informal fish traders and key informants’ interviews with border post fish inspection and revenue collection officials that traders are put off by the cross-border regulations. Therefore, it is important for countries in the Southern African Development Community (SADC) region to regularize and formalize cross-border trade, particularly in small pelagic fish species, since this species plays a great role in the livelihoods, food and nutrition security of many people in the region, especially the rural and urban poor. It is also important for governments to support processors and traders to improve the quality of fish being traded, and decentralize issuing of the import/export certificates and other cross-border support documents. Lastly, there is a need to establish informal fish trade monitoring systems to adequately quantify the volumes traded

    Understanding the epidemiology of iNTS disease in Africa in preparation for future iNTS- vaccine studies in endemic countries: Seroepidemiology in Africa of iNTS (SAiNTS) Study Protocol [Version 9.0]

    No full text
    Background: Non-typhoidal Salmonella (NTS) are a major cause of bloodstream infections amongst children in sub-Saharan Africa. A clear understanding of the seroepidemiology and correlates of protection for invasive NTS (iNTS) in relation to key risk factors (malaria, anaemia, malnutrition) in children in Africa is needed to inform strategies for disease control including vaccine implementation. Method: ology:  The SAiNTS study is a prospective community cohort study with paired serology samples from 2500 children 0-5 years at baseline and three months to measure age-stratified acquisition of lipopolysaccharide (LPS) O-antigen antibody (IgG) and serum bactericidal activity to the main serovars causing iNTS ( Salmonella typhimurium and S. enteritidis ). Children are selected from mapped and censused randomly selected households in Chikwawa, Malawi; an area with substantial malaria burden. The sampling framework is set within a malaria vaccination (RTS,S/ AS01) phase 4 cluster randomized trial (EPIMAL), allowing exploration of the impact of malaria vaccination on acquisition of immunity to NTS. Data on risk factors for invasive disease: malaria, anaemia and malnutrition as well as indicators of socioeconomic status and water and sanitation, will be collected using rapid diagnostic tests, anthropometry and electronic CRF’s. Stool sample analysis includes NTS culture and pan-Salmonella polymerase chain reaction to assess enteric exposure and biomarkers of environmental enteric dysfunction. Cases with iNTS disease will be followed up for comparison with community controls. Conclusions: :  The final cohort of 2500 children will allow investigation into the impact of risk factors for iNTS on the acquisition of immunity in children 0-5 years in an endemic setting, including comparisons to partner sero-epidemiology studies in three other sub-Saharan African sites. The data generated will be key to informing iNTS disease control measures including targeted risk factor interventions and vaccine implementation through investigation of correlates of protection and identifying windows of immune susceptibility in at-risk populations

    Characterization of Enzyme-Linked Immunosorbent Assay (ELISA) for Quantification of Antibodies against <i>Salmonella</i> Typhimurium and <i>Salmonella</i> Enteritidis O-Antigens in Human Sera

    No full text
    Nontyphoidal Salmonella (NTS) is a leading cause of morbidity and mortality caused by enteric pathogens worldwide in both children and adults, and vaccines are not yet available. The measurement of antigen-specific antibodies in the sera of vaccinated or convalescent individuals is crucial to understand the incidence of disease and the immunogenicity of vaccine candidates. A solid and standardized assay used to determine the level of specific anti-antigens IgG is therefore of paramount importance. In this work, we presented the characterization of a customized enzyme-linked immunosorbent assay (ELISA) with continuous readouts and a standardized definition of EU/mL. We assessed various performance parameters: standard curve accuracy, dilutional linearity, intermediate precision, specificity, limits of blanks, and quantification. The simplicity of the assay, its high sensitivity and specificity coupled with its low cost and the use of basic consumables and instruments without the need of high automation makes it suitable for transfer and application to different laboratories, including resource-limiting settings where the disease is endemic. This ELISA is, therefore, fit for purpose to be used for quantification of antibodies against Salmonella Typhimurium and Salmonella Enteritidis O-antigens in human samples, both for vaccine clinical trials and large sero-epidemiological studies

    Efficacy of typhoid conjugate vaccine: final analysis of a 4-year, phase 3, randomised controlled trial in Malawian children.

    No full text
    BackgroundRandomised controlled trials of typhoid conjugate vaccines among children in Africa and Asia have shown high short-term efficacy. Data on the durability of protection beyond 2 years are sparse. We present the final analysis of a randomised controlled trial in Malawi, encompassing more than 4 years of follow-up, with the aim of investigating vaccine efficacy over time and by age group.MethodsIn this phase 3, double-blind, randomised controlled efficacy trial in Blantyre, Malawi, healthy children aged 9 months to 12 years were randomly assigned (1:1) by an unmasked statistician to receive a single dose of Vi polysaccharide conjugated to tetanus toxoid vaccine (Vi-TT) or meningococcal capsular group A conjugate (MenA) vaccine. Children had to have no previous history of typhoid vaccination and reside in the study areas for inclusion and were recruited from government schools and health centres. Participants, their parents or guardians, and the study team were masked to vaccine allocation. Nurses administering vaccines were unmasked. We did surveillance for febrile illness from vaccination until follow-up completion. The primary outcome was first occurrence of blood culture-confirmed typhoid fever. Eligible children who were randomly assigned and vaccinated were included in the intention-to-treat analyses. This trial is registered at ClinicalTrials.gov, NCT03299426.FindingsBetween Feb 21, 2018, and Sept 27, 2018, 28 130 children were vaccinated; 14 069 were assigned to receive Vi-TT and 14 061 to receive MenA. After a median follow-up of 4·3 years (IQR 4·2-4·5), 24 (39·7 cases per 100 000 person-years) children in the Vi-TT group and 110 (182·7 cases per 100 000 person-years) children in the MenA group were diagnosed with a first episode of blood culture-confirmed typhoid fever. In the intention-to-treat population, efficacy of Vi-TT was 78·3% (95% CI 66·3-86·1), and 163 (129-222) children needed to be vaccinated to prevent one case. Efficacies by age group were 70·6% (6·4-93·0) for children aged 9 months to 2 years; 79·6% (45·8-93·9) for children aged 2-4 years; and 79·3% (63·5-89·0) for children aged 5-12 years.InterpretationA single dose of Vi-TT is durably efficacious for at least 4 years among children aged 9 months to 12 years and shows efficacy in all age groups, including children younger than 2 years. These results support current WHO recommendations in typhoid-endemic areas for mass campaigns among children aged 9 months to 15 years, followed by routine introduction in the first 2 years of life.FundingBill & Melinda Gates Foundation
    corecore