179 research outputs found

    Factors contributing to delay in parasite clearance in uncomplicated falciparum malaria in children

    Get PDF
    Background: Drug resistance in Plasmodium falciparum is common in many endemic and other settings but there is no clear recommendation on when to change therapy when there is delay in parasite clearance after initiation of therapy in African children. Methods: The factors contributing to delay in parasite clearance, defined as a clearance time > 2 d, in falciparum malaria were characterized in 2,752 prospectively studied children treated with anti-malarial drugs between 1996 and 2008. Results: 1,237 of 2,752 children (45%) had delay in parasite clearance. Overall 211 children (17%) with delay in clearance subsequently failed therapy and they constituted 72% of those who had drug failure, i.e., 211 of 291 children. The following were independent risk factors for delay in parasite clearance at enrolment: age less than or equal to 2 years (Adjusted odds ratio [AOR] = 2.13, 95% confidence interval [CI]1.44-3.15, P < 0.0001), presence of fever (AOR = 1.33, 95% CI = 1.04-1.69, P = 0.019), parasitaemia >50,000/ul (AOR = 2.21, 95% CI = 1.77-2.75, P < 0.0001), and enrolment before year 2000 (AOR= 1.55, 95% CI = 1.22-1.96, P < 0.0001). Following treatment, a body temperature ≥ 38°C and parasitaemia > 20000/μl a day after treatment began, were independent risk factors for delay in clearance. Non-artemisinin monotherapies were associated with delay in clearance and treatment failures, and in those treated with chloroquine or amodiaquine, with pfmdr 1/pfcrt mutants. Delay in clearance significantly increased gametocyte carriage (P < 0.0001). Conclusion: Delay in parasite clearance is multifactorial, is related to drug resistance and treatment failure in uncomplicated malaria and has implications for malaria control efforts in sub-Saharan Africa

    Genome-wide scans provide evidence for positive selection of genes implicated in Lassa fever

    Get PDF
    Rapidly evolving viruses and other pathogens can have an immense impact on human evolution as natural selection acts to increase the prevalence of genetic variants providing resistance to disease. With the emergence of large datasets of human genetic variation, we can search for signatures of natural selection in the human genome driven by such disease-causing microorganisms. Based on this approach, we have previously hypothesized that Lassa virus (LASV) may have been a driver of natural selection in West African populations where Lassa haemorrhagic fever is endemic. In this study, we provide further evidence for this notion. By applying tests for selection to genome-wide data from the International Haplotype Map Consortium and the 1000 Genomes Consortium, we demonstrate evidence for positive selection in LARGE and interleukin 21 (IL21), two genes implicated in LASV infectivity and immunity. We further localized the signals of selection, using the recently developed composite of multiple signals method, to introns and putative regulatory regions of those genes. Our results suggest that natural selection may have targeted variants giving rise to alternative splicing or differential gene expression of LARGE and IL21. Overall, our study supports the hypothesis that selective pressures imposed by LASV may have led to the emergence of particular alleles conferring resistance to Lassa fever, and opens up new avenues of research pursuit

    Urgent need for a non-discriminatory and non-stigmatizing nomenclature for monkeypox virus

    Get PDF
    Free PMC article: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9451062/We propose a novel, non-discriminatory classification of monkeypox virus diversity. Together with the World Health Organization, we named three clades (I, IIa and IIb) in order of detection. Within IIb, the cause of the current global outbreak, we identified multiple lineages (A.1, A.2, A.1.1 and B.1) to support real-time genomic surveillance.info:eu-repo/semantics/publishedVersio

    A qualitative study of the feasibility and community perception on the effectiveness of artemether-lumefantrine use in the context of home management of malaria in south-west Nigeria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Nigeria ACT use at the community level has not been evaluated and the use of antimalarial drugs (commonly chloroquine (CQ)) at home has been shown to be largely incorrect. The treatment regimen of ACT is however more complicated than that of CQ. There is thus a need to determine the feasibility of using ACT at the home level and determine community perception on its use.</p> <p>Methods</p> <p>A before and after qualitative study using key informant interviews (KII) and focus group discussions (FGDs) was conducted in selected villages in Ona-Ara local government area. At baseline, 14 FGDs and 14 KIIs were conducted. Thereafter, community medicine distributors (CMDs) were trained in each village to dispense artemeter-lumenfantrine (AL) to febrile children aged 6–59 months presumed to have uncomplicated malaria. After one year of drug distribution, nine KIIs and 10 FGDs were conducted. Participants and key informants were mothers and fathers with children under five years, traditional heads of communities, opinion leaders and health workers.</p> <p>Results</p> <p>None of the participants have heard of AL prior to study. Participants were favourably disposed to introduction of AL into the community. Mothers/caregivers were said to have used AL in place of the orthodox drugs and herbs reported commonly used prior to study after commencement of AL distribution. The use of CMDs for drug distribution was acceptable to the participants and they were judged to be efficient as they were readily available, distributed correct dose of AL and mobilised the community effectively. AL was perceived to be very effective and no significant adverse event was reported. Major concerns to the sustainability of the program were the negative attitudes of health workers towards discharge of their duties, support to the CMDs and the need to provide CMDs incentives. In addition regular supply of drugs and adequate supervision of CMDs were advised.</p> <p>Conclusion</p> <p>Our findings showed that the use of AL at home and community level is feasible with adequate training of community medicine distributors and caregivers. Community members perceived AL to be effective thus fostering acceptability. The negative attitudes of the health workers and issue of incentives to CMDs need to be addressed for successful scaling-up of ACT use at community level.</p

    Effects of mefloquine and artesunate mefloquine on the emergence, clearance and sex ratio of Plasmodium falciparum gametocytes in malarious children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The gametocyte sex ratio of <it>Plasmodium falciparum</it>, defined as the proportion of gametocytes that are male, may influence transmission but little is known of the effects of mefloquine or artesunate-mefloquine on gametocyte sex ratio and on the sex ratio of first appearing gametocytes.</p> <p>Methods</p> <p>350 children with uncomplicated <it>P. falciparum </it>malaria were enrolled in prospective treatment trial of mefloquine or artesunate-mefloquine between 2007 and 2008. Gametocytaemia was quantified, and gametocytes were sexed by morphological appearance, before and following treatment. The area under curve of gametocyte density <it>versus </it>time (AUC<sub>gm</sub>) was calculated by linear trapezoidal method.</p> <p>Results</p> <p>91% and 96% of all gametocytes appeared by day 7 and day 14, respectively following treatment. The overall rate of gametocytaemia with both treatments was 31%, and was significantly higher in mefloquine than in artesunate-mefloquine treated children if no gametocyte was present a day after treatment began (25.3% <it>v </it>12.8%, P = 0.01). Gametocyte clearance was significantly faster with artesunate-mefloquine (1.8 ± 0.22 [sem] <it>v </it>5.6 ± 0.95 d; P = 0.001). AUC<sub>gm </sub>was significantly lower in the artesunate mefloquine group (P = 0.008). The pre-treatment sex ratio was male-biased, but post-treatment sex ratio or the sex ratio of first appearing gametocytes, was significantly lower and female-biased two or three days after beginning of treatment in children given artesunate-mefloquine.</p> <p>Conclusion</p> <p>Addition of artesunate to mefloquine significantly modified the emergence, clearance, and densities of gametocytes and has short-lived, but significant, sex ratio modifying effects in children from this endemic area.</p

    Rapid increase of Plasmodium falciparum dhfr/dhps resistant haplotypes, after the adoption of sulphadoxine-pyrimethamine as first line treatment in 2002, in southern Mozambique

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In late 2002, the health authorities of Mozambique implemented sulphadoxine-pyrimethamine (SP)/amodiaquine (AQ) as first-line treatment against uncomplicated falciparum malaria. In 2004, this has been altered to SP/artesunate in line with WHO recommendations of using Artemisinin Combination Therapies (ACTs), despite the fact that all the neighbouring countries have abandoned SP-drug combinations due to high levels of SP drug resistance. In the study area, one year prior to the change to SP/AQ, SP alone was used to treat uncomplicated malaria cases. The study described here investigated the immediate impact of the change to SP on the frequency of SP and CQ resistance-related haplotypes in the <it>Plasmodium falciparum </it>genes <it>Pfdhfr, Pfdhps </it>and <it>Pfcrt </it>before and a year after the introduction of SP.</p> <p>Methods</p> <p>Samples were collected during two cross sectional surveys in early 2002 and 2003 involving 796 and 692 children one year or older and adults randomly selected living in Maciana, an area located in Manhiça district, Southern Mozambique. Out of these, 171 and 173 <it>P. falciparum </it>positive samples were randomly selected to measure the frequency of resistance- related haplotypes in <it>Pfdhfr, Pfdhps </it>and <it>Pfcrt </it>based on results obtained by nested PCR followed by sequence-specific oligonucleotide probe (SSOP)-ELISA.</p> <p>Results</p> <p>The frequency of the SP-resistance associated <it>Pfdhps </it>double mutant (SGEAA) haplotype increased significantly from 14% to 35% (P < 0.001), while the triple mutant <it>Pfdhfr </it>haplotype (CIRNI) remained high and only changed marginally from 46% to 53% (P = 0.405) after one year with SP as first-line treatment in the study area. Conversely, the combined <it>Pfdhfr/Pfdhps </it>quintuple mutant haplotype increased from 8% to 26% (P = 0.005). The frequency of the chloroquine resistance associated <it>Pfcrt</it>-CVIET haplotype was above 90% in both years.</p> <p>Conclusion</p> <p>These retrospective findings add to the general concern on the lifespan of the combination of SP/artesunate in Mozambique. The high frequency of quintuple <it>Pfdhfr</it>/<it>Pfdhps </it>haplotypes found here as early as 2002 most likely cause ideal conditions for the development of artesunate tolerance in the <it>P. falciparum </it>populations and may even endanger the sensitivity to the second-line drug, Coartem<sup>®</sup>.</p

    A systematic review and meta-analysis of evidence for correlation between molecular markers of parasite resistance and treatment outcome in falciparum malaria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An assessment of the correlation between anti-malarial treatment outcome and molecular markers would improve the early detection and monitoring of drug resistance by <it>Plasmodium falciparum</it>. The purpose of this systematic review was to determine the risk of treatment failure associated with specific polymorphisms in the parasite genome or gene copy number.</p> <p>Methods</p> <p>Clinical studies of non-severe malaria reporting on target genetic markers (SNPs for <it>pfmdr1</it>, <it>pfcrt</it>, <it>dhfr</it>, <it>dhps</it>, gene copy number for <it>pfmdr1</it>) providing complete information on inclusion criteria, outcome, follow up and genotyping, were included. Three investigators independently extracted data from articles. Results were stratified by gene, codon, drug and duration of follow-up. For each study and aggregate data the random effect odds ratio (OR) with 95%CIs was estimated and presented as Forest plots. An OR with a lower 95<sup>th </sup>confidence interval > 1 was considered consistent with a failure being associated to a given gene mutation.</p> <p>Results</p> <p>92 studies were eligible among the selection from computerized search, with information on <it>pfcrt </it>(25/159 studies), <it>pfmdr1 </it>(29/236 studies), <it>dhfr </it>(18/373 studies), <it>dhps </it>(20/195 studies). The risk of therapeutic failure after chloroquine was increased by the presence of <it>pfcrt </it>K76T (Day 28, OR = 7.2 [95%CI: 4.5–11.5]), <it>pfmdr1 </it>N86Y was associated with both chloroquine (Day 28, OR = 1.8 [95%CI: 1.3–2.4]) and amodiaquine failures (OR = 5.4 [95%CI: 2.6–11.3, p < 0.001]). For sulphadoxine-pyrimethamine the <it>dhfr </it>single (S108N) (Day 28, OR = 3.5 [95%CI: 1.9–6.3]) and triple mutants (S108N, N51I, C59R) (Day 28, OR = 3.1 [95%CI: 2.0–4.9]) and <it>dhfr</it>-<it>dhps </it>quintuple mutants (Day 28, OR = 5.2 [95%CI: 3.2–8.8]) also increased the risk of treatment failure. Increased <it>pfmdr1 </it>copy number was correlated with treatment failure following mefloquine (OR = 8.6 [95%CI: 3.3–22.9]).</p> <p>Conclusion</p> <p>When applying the selection procedure for comparative analysis, few studies fulfilled all inclusion criteria compared to the large number of papers identified, but heterogeneity was limited. Genetic molecular markers were related to an increased risk of therapeutic failure. Guidelines are discussed and a checklist for further studies is proposed.</p
    corecore