44 research outputs found

    Endometrial Stem Cell Markers: Current Concepts and Unresolved Questions

    Get PDF
    The human endometrium is a highly regenerative organ undergoing over 400 cycles of shedding and regeneration over a woman’s lifetime. Menstrual shedding and the subsequent repair of the functional layer of the endometrium is a process unique to humans and higher-order primates. This massive regenerative capacity is thought to have a stem cell basis, with human endometrial stromal stem cells having already been extensively studied. Studies on endometrial epithelial stem cells are sparse, and the current belief is that the endometrial epithelial stem cells reside in the terminal ends of the basalis glands at the endometrial/myometrial interface. Since almost all endometrial pathologies are thought to originate from aberrations in stem cells that regularly regenerate the functionalis layer, expansion of our current understanding of stem cells is necessary in order for curative treatment strategies to be developed. This review critically appraises the postulated markers in order to identify endometrial stem cells. It also examines the current evidence supporting the existence of epithelial stem cells in the human endometrium that are likely to be involved both in glandular regeneration and in the pathogenesis of endometrial proliferative diseases such as endometriosis and endometrial cancer

    Human Uterine Biopsy: Research Value and Common Pitfalls.

    Get PDF
    The human uterus consists of the inner endometrium, the myometrium, and the outer serosa. Knowledge of the function of the uterus in health and disease is relevant to reproduction, fertility, embryology, gynaecology, endocrinology, and oncology. Research performed on uterine biopsies is essential to further the current understanding of human uterine biology. This brief review explores the value of the uterine biopsy in gynaecological and human fertility research and explores the common problems encountered when analysing data generated from different types of uterine biopsies, with the aim of improving the quality, reproducibility, and clinical translatability of future research

    National Survey Highlights the Urgent Need for Standardisation of Embryo Transfer Techniques in the UK

    Get PDF
    Embryo transfer (ET) is one of the vital steps in the in vitro fertilisation (IVF) process, yet there is wide variation in ET technique throughout the UK, without a nationally approved standardised approach. The aim of this study was to gain contemporaneous information regarding the current clinical ET practice in the UK. Method: A 38-question electronic survey was distributed to the 79 UK Human Fertilisation and Embryology Authority (HFEA) registered clinics performing ETs. Results: In total, 59% (47/79) of units responded, 83% (39/47) performing ultrasound-guided transfers, with 42% (20/47) of units using a tenaculum; 22% (10/45) would proceed with transfer regardless of fluid in the endometrial cavity. In 91% (43/47) of units, embryos were deposited in the upper/middle portion of the uterine cavity, but interpretation of this area ranged from 0.5 to >2 cm from the fundus, with 68% (32/47) allowing patients to mobilise immediately after transfer. In 60% (27/45) of clinics, success rates were based on clinical pregnancy rates (CPR). Conclusion: Within the UK there is a wide range of variability in ET techniques, with >70% of discordance in survey-responses between clinics. Whilst there are areas of good practice, some disadvantageous techniques continue to persist. This survey emphasises the importance of developing a standardised, evidence-based approach to improve ET success rates

    Telomere and Telomerase-Associated Proteins in Endometrial Carcinogenesis and Cancer-Associated Survival

    Get PDF
    Risk of relapse of endometrial cancer (EC) after surgical treatment is 13% and recurrent disease carries a poor prognosis. Research into prognostic indicators is essential to improve EC management and outcome. “Immortality” of most cancer cells is dependent on telomerase, but the role of associated proteins in the endometrium is poorly understood. The Cancer Genome Atlas data highlighted telomere/telomerase associated genes (TTAGs) with prognostic relevance in the endometrium, and a recent in silico study identified a group of TTAGs and proteins as key regulators within a network of dysregulated genes in EC. We characterise relevant telomere/telomerase associated proteins (TTAPs) NOP10, NHP2, NOP56, TERF1, TERF2 and TERF2IP in the endometrium using quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC). qPCR data demonstrated altered expression of multiple TTAPs; specifically, increased NOP10 (p = 0.03) and reduced NHP2 (p = 0.01), TERF2 (p = 0.01) and TERF2IP (p < 0.003) in EC relative to post-menopausal endometrium. Notably, we report reduced NHP2 in EC compared to post-menopausal endometrium in qPCR and IHC (p = 0.0001) data; with survival analysis indicating high immunoscore is favourable in EC (p = 0.0006). Our findings indicate a potential prognostic role for TTAPs in EC, particularly NHP2. Further evaluation of the prognostic and functional role of the examined TTAPs is warranted to develop novel treatment strategies

    Endometriosis and the Fallopian Tubes: Theories of Origin and Clinical Implications

    Get PDF
    Endometriosis is a common, oestrogen driven chronic condition, where endometrium-like epithelial and stromal cells exist in ectopic sites. At present, no curative treatments are available and the existing evidence for disease progression is conflicting. The pathogenesis is still unknown and evidently complex, as mechanisms of initiation may depend on the anatomical distribution of endometriotic lesions. However, amongst the numerous theories and plethora of mechanisms, contributions of the fallopian tubes (FT) to endometriosis are rarely discussed. The FT are implicated in all endometriosis associated symptomatology and clinical consequences; they may contribute to the origin of endometriotic tissue, determine the sites for ectopic lesion establishment and act as conduits for the spread of proinflammatory media. Here, we examine the available evidence for the contribution of the human FT to the origin, pathogenesis and symptoms/clinical consequences of endometriosis. We also examine the broader topic linking endometriosis and the FT epithelium to the genesis of ovarian epithelial cancers. Further studies elucidating the distinct functional and phenotypical characteristics of FT mucosa may allow the development of novel treatment strategies for endometriosis that are potentially curative

    Role of Nucleolin in Endometrial Precancerous Hyperplasia and Carcinogenesis: Ex Vivo and In Silico Study

    Get PDF
    Endometrial cancer (EC) is the most common gynaecological malignancy. Nucleolin (NCL) is involved in rDNA transcription, cell proliferation, and apoptosis, with high expression associated with worse overall survival (OS) in other adenocarcinomas. Our aims were to assess NCL gene and protein expression and explore the differential expression of NCL-associated genes (NAGs) in endometrial carcinogenesis. Endometrial samples were obtained from 157 women to include healthy, hyperplastic (EH), EC, and metastatic groups. RT-qPCR and immunohistochemistry were employed to assess NCL gene and protein levels. In silico analysis of NAGs in TCGA and GEO datasets was performed, with the prognostic value determined via Human Protein Atlas. NCL mRNA level of EC was lower than in healthy post-menopausal endometrium (p < 0.01). EH samples had lower NCL immuno-expression scores than healthy pre-menopausal (p < 0.001), benign post-menopausal (p < 0.01), and EC (p < 0.0001) samples. Metastatic lesions demonstrated higher NCL quick scores than primary tissue (p = 0.04). Higher NCL Immuno quick scores carried a worse OS in high-grade EC (p = 0.01). Interrogating Uterine Corpus Endometrial Carcinoma (TCGA-UCEC) and Uterine Carcinosarcoma (TCGA-UCS) cohorts revealed NCL to be the most highly upregulated gene in carcinosarcoma, with S100A11, LMNB2, RERG, E2F1 and CCNA2 representing key dysregulated NAGs in EC. Since NCL is implicated in transforming hyperplastic glands into cancer, with further involvement in metastasis, it is suggested to be a promising target for better-informed diagnosis, risk stratification, and management of EC

    S18-phosphorylation of USP7 regulates interaction with TCEAL4 that defines specific complexes and potentially distinct functions

    Get PDF
    AbstractUSP7 is a nuclear deubiquitylase (DUB) with multiple cancer-associated substrates for which selective inhibitors are available, yet it remains unclear how the pleiotropic effects of USP7 are regulated. We report that S18-phosphorylation does not influence USP7 catalytic activity but instead confers selectivity for protein interactions. In particular, non-S18-phosphorylatable USP7 preferentially interacts with USP11 and TRIM27, together with TCEAL1 and TCEAL4 whose functions are unknown. Intriguingly, USP7 can interact with two cellular forms of TCEAL4, but USP11 only interacts with a lower abundance K142 mono-ubiquitylated form (TCEAL4-Ub), which can scaffold a complex containing both DUBs. Whilst USP11 and TCEAL4 are both USP7 substrates, TCEAL4-Ub levels are specifically maintained by USP11 with their levels positively correlated in cancer cell lines. Together these data illustrate how USP7 phosphorylation and TCEAL4 ubiquitylation combine to define distinct USP7 complexes. As TCEAL4 itself interacts with proteins involved in ubiquitylation and various forms of DNA regulation, these complexes may direct cellular activity of USP7.</jats:p

    The role of iron in the pathogenesis of endometriosis: a systematic review

    Get PDF
    Abstract STUDY QUESTION What is the role of iron in the pathophysiology of endometriosis? SUMMARY ANSWER Iron excess is demonstrated wherever endometriotic tissues are found and is associated with oxidative stress, an inflammatory microenvironment and cell damage; the iron-mediated oxidative stress is independently linked to subfertility, symptom severity and malignant transformation. WHAT IS KNOWN ALREADY Iron is found in excess in endometriotic tissues, and multiple mechanisms have been studied and posited to explain this. It is clear that iron excess plays a vital role in promoting oxidative stress and cell damage. The evidence base is large, but no comprehensive reviews exist to summarise our understanding and highlight the overarching themes to further our understanding and suggest future directions of study for the field. STUDY DESIGN, SIZE, DURATION This systematic review with a thematic analysis retrieved studies from the PubMed, Embase, Web of Science and Cochrane Library databases and searches were conducted from inception through to August 2022. Human and animal studies published in the English language were included and identified using a combination of exploded MeSH terms (‘Iron’ and ‘Endometriosis’) and free-text search terms (‘Iron’, ‘Ferric’, ‘Ferrous’, ‘Endometriosis’, ‘Endometrioma’). PARTICIPANTS/MATERIALS, SETTING, METHODS This review was reported in accordance with the PRISMA guidelines. All studies reporting original data concerning the role of iron or iron complexes in the pathophysiology of endometriosis were included. Studies which did not report original data or provided a review of the field were excluded. Bias analysis was completed for each included study by using the Newcastle-Ottawa scoring system. MAIN RESULTS AND THE ROLE OF CHANCE There were 776 records identified and these were screened down to 53 studies which met the eligibility criteria, including 6 animal and 47 human studies, with 3,556 individual participants. Iron excess is demonstrated in various tissues and fluids, including ovarian endometriomas, ovarian follicles, ectopic endometriotic lesions and peritoneal fluid. Markers of oxidative stress are strongly associated with high iron levels, and aberrant expression of iron-transport proteins has been demonstrated. Abnormal resistance to ferroptosis is likely. Iron-mediated oxidative stress is responsible for a pro-inflammatory micro-environment and is linked to subfertility, symptom severity and, possibly, malignant transformation. LIMITATIONS, REASONS FOR CAUTION A minority of the included studies were of objectively low quality with a high-risk of bias and may lead to misleading conclusions. Additionally, multiple studies failed to appropriately characterise the included patients by known confounding variables such as menstrual cycle phase, which may introduce bias to the findings. WIDER IMPLICATIONS OF THE FINDINGS Current literature depicts a central role of aberrant iron mechanics and subsequent oxidative stress in endometriosis. It is likely that iron excess is at least partly responsible for the persistence and proliferation of ectopic endometriotic lesions. As such, iron mechanics represent an attractive target for novel therapeutics, including iron chelators or effectors of the iron-oxidative stress pathway. There are significant gaps in our current understanding, and this review highlights and recommends several topics for further research. These include the role of iron chelation, resistance to ferroptosis, the relationship between iron excess and localised hypoxia, systemic iron pathophysiology in endometriosis, and the role of oxidative stress in malignant transformation. STUDY FUNDING/COMPETING INTEREST(S) J.W and S.P are supported by clinical fellowships at Liverpool University Hospital NHS Foundation trust. No additional funding was requested or required for the completion of this work. C.J.H. is supported by a Wellbeing of Women project grant (RG2137). D.K.H. is supported by a Wellbeing of Women project grant (RG2137) and MRC clinical research training fellowship (MR/V007238/1). The authors have no conflicts of interest to declare. REGISTRATION NUMBER A protocol was prospectively registered with the PROSPERO database in August 2021 (CRD42021272818) </jats:sec
    corecore