7 research outputs found

    Artificial Intelligence for Securing IoT Services in Edge Computing: A Survey

    No full text
    With the explosive growth of data generated by the Internet of Things (IoT) devices, the traditional cloud computing model by transferring all data to the cloud for processing has gradually failed to meet the real-time requirement of IoT services due to high network latency. Edge computing (EC) as a new computing paradigm shifts the data processing from the cloud to the edge nodes (ENs), greatly improving the Quality of Service (QoS) for those IoT applications with low-latency requirements. However, compared to other endpoint devices such as smartphones or computers, distributed ENs are more vulnerable to attacks for restricted computing resources and storage. In the context that security and privacy preservation have become urgent issues for EC, great progress in artificial intelligence (AI) opens many possible windows to address the security challenges. The powerful learning ability of AI enables the system to identify malicious attacks more accurately and efficiently. Meanwhile, to a certain extent, transferring model parameters instead of raw data avoids privacy leakage. In this paper, a comprehensive survey of the contribution of AI to the IoT security in EC is presented. First, the research status and some basic definitions are introduced. Next, the IoT service framework with EC is discussed. The survey of privacy preservation and blockchain for edge-enabled IoT services with AI is then presented. In the end, the open issues and challenges on the application of AI in IoT services based on EC are discussed

    Core Structure and Electromagnetic Field Evaluation in WPT Systems for Charging Electric Vehicles

    No full text
    The electromagnetic field (EMF) in a wireless power transfer (WPT) system needs to couple inductively between the primary and the secondary coils through a large air gap, thus giving the system a loosely coupled characteristic. Therefore, magnetically permeable material must be employed to improve the coupling and reduce leakage magnetic flux. However, adding an iron core increases the weight and introduces core loss as a new factor. In this paper, a WPT system model using a lumped circuit model is introduced. Moreover, the relationship between the relative permeability and the coupling coefficient in addition to the core amount (core thickness) and core loss are discussed. Three cores structure named: pot, slotted, and shaped bars cores are investigated using finite element method (FEM) software. Inspired by the investigation results, a new core structure using optimum shaped bars is proposed, the EMF level for reducing core loss in high-power transfer systems and in order to mitigate the EMF exposure to humans is intensively evaluated. The proposed core succeeded in reducing EMF and core loss by about 44% and 30%, respectively. The FEM software and physical prototype were used to validate the proposed optimum core structure. Results showed that 3.5 kW power transferred through a 20 cm air gap with 96% system efficiency(coil–coil)

    Enhancement of Fusion Reactivity under Non-Maxwellian Distributions: Effects of Drift-Ring-Beam, Slowing-Down, and Kappa Super-Thermal Distributions

    Full text link
    Non-Maxwellian distributions of particles are commonly observed in fusion studies, especially for magnetic confinement fusion plasmas. The particle distribution has a direct effect on fusion reactivity, which is the focus of this study. We investigate the effects of three types of non-Maxwellian distributions, namely drift-ring-beam, slowing-down, and kappa super-thermal distributions, on the fusion reactivities of D-T (Deuterium-Trillium) and p-B11 (proton-Boron) using a newly developed program, where the enhancement of fusion reactivity relative to the Maxwellian distribution is computed while keeping the total kinetic energy constant. The calculation results show that for the temperature ranges of interest to us, namely 5-50 keV for D-T and 100-500 keV for p-B11, these non-Maxwellian distributions can enhance the fusion reactivities. In the case of the drift-ring-beam distribution, the enhancement factors for both reactions are affected by the perpendicular ring beam velocity, leading to decreased enhancement in low temperature range and increased enhancement in high temperature range. However, this effect is favorable for p-B11 fusion reaction and unfavorable for D-T fusion reaction. In the slowing-down distribution, the birth speed plays a crucial role in both reactions, and increasing birth speed leads to a shift in the enhancement ranges towards lower temperatures, which is beneficial for both reactions. Finally, the kappa super-thermal distribution results in a relatively large enhancement in the low temperature range with a small high energy power-law index {\kappa}. Overall, this study provides insight into the effects of non-Maxwellian distributions on fusion reactivity and highlights potential opportunities for enhancing fusion efficiency.Comment: 12 pages, 18 figure

    Efficient organic room-temperature phosphorescence in both solution and solid states

    No full text
    Organic room-temperature phosphorescence (RTP) materials possess immense potential for a variety of applications. However, conventional RTP materials face substantial problems, such as no phosphorescence in ambient solution, and inefficient amorphous films and electroluminescence devices. To address these issues, intrinsic RTP emitters can display efficient RTP in various states and achieve multiple desired properties through the same molecule. In this work, dendrimers are first used to design of efficient intrinsic RTP materials by incorporating dendrons as triplet regulators to facilitate effective spin-orbit coupling, intersystem crossing, and triplet radiative transitions that exhibit a significant transformation from delayed fluorescence to intrinsic RTP in different states. The dendrimers exhibit long phosphorescence lifetime within milliseconds in ambient solution, photoluminescence quantum yield of 98% in doped films, and substantially high external quantum efficiency of 25.1% in the organic electroluminescence devices. Moreover, by regulating the triplet characteristics of the dendrimers, the dendrimers display up-converted anti-Kasha dual-RTP emissions and an ultra-long afterglow lifetime within seconds in rigid polymer matrixes. These results pave the way for the development of novel RTP systems for versatile optoelectronic applications
    corecore