363 research outputs found

    AMPLIFY:Attention-based Mixup for Performance Improvement and Label Smoothing in Transformer

    Full text link
    Mixup is an effective data augmentation method that generates new augmented samples by aggregating linear combinations of different original samples. However, if there are noises or aberrant features in the original samples, Mixup may propagate them to the augmented samples, leading to over-sensitivity of the model to these outliers . To solve this problem, this paper proposes a new Mixup method called AMPLIFY. This method uses the Attention mechanism of Transformer itself to reduce the influence of noises and aberrant values in the original samples on the prediction results, without increasing additional trainable parameters, and the computational cost is very low, thereby avoiding the problem of high resource consumption in common Mixup methods such as Sentence Mixup . The experimental results show that, under a smaller computational resource cost, AMPLIFY outperforms other Mixup methods in text classification tasks on 7 benchmark datasets, providing new ideas and new ways to further improve the performance of pre-trained models based on the Attention mechanism, such as BERT, ALBERT, RoBERTa, and GPT. Our code can be obtained at https://github.com/kiwi-lilo/AMPLIFY

    iMetricGAN: Intelligibility Enhancement for Speech-in-Noise using Generative Adversarial Network-based Metric Learning

    Full text link
    The intelligibility of natural speech is seriously degraded when exposed to adverse noisy environments. In this work, we propose a deep learning-based speech modification method to compensate for the intelligibility loss, with the constraint that the root mean square (RMS) level and duration of the speech signal are maintained before and after modifications. Specifically, we utilize an iMetricGAN approach to optimize the speech intelligibility metrics with generative adversarial networks (GANs). Experimental results show that the proposed iMetricGAN outperforms conventional state-of-the-art algorithms in terms of objective measures, i.e., speech intelligibility in bits (SIIB) and extended short-time objective intelligibility (ESTOI), under a Cafeteria noise condition. In addition, formal listening tests reveal significant intelligibility gains when both noise and reverberation exist.Comment: 5 pages, Submitted to INTERSPEECH 202

    Learning a Stable Dynamic System with a Lyapunov Energy Function for Demonstratives Using Neural Networks

    Full text link
    Autonomous Dynamic System (DS)-based algorithms hold a pivotal and foundational role in the field of Learning from Demonstration (LfD). Nevertheless, they confront the formidable challenge of striking a delicate balance between achieving precision in learning and ensuring the overall stability of the system. In response to this substantial challenge, this paper introduces a novel DS algorithm rooted in neural network technology. This algorithm not only possesses the capability to extract critical insights from demonstration data but also demonstrates the capacity to learn a candidate Lyapunov energy function that is consistent with the provided data. The model presented in this paper employs a straightforward neural network architecture that excels in fulfilling a dual objective: optimizing accuracy while simultaneously preserving global stability. To comprehensively evaluate the effectiveness of the proposed algorithm, rigorous assessments are conducted using the LASA dataset, further reinforced by empirical validation through a robotic experiment
    • …
    corecore