252 research outputs found

    Coupled topological flat and wide bands: Quasiparticle formation and destruction

    Full text link
    Flat bands amplify correlation effects and are of extensive current interest. They provide a platform to explore both topology in correlated settings and correlation physics enriched by topology. Recent experiments in correlated kagome metals have found evidence for strange-metal behavior. A major theoretical challenge is to study the effect of local Coulomb repulsion when the band topology obstructs a real-space description. In a variant to the kagome lattice, we identify an orbital-selective Mott transition for the first time in any system of coupled topological flat and wide bands. This was made possible by the construction of exponentially localized and Kramers-doublet Wannier functions, which in turn leads to an effective Kondo lattice description. Our findings show how quasiparticles are formed in such coupled topological flat-wide band systems and, equally important, how they are destroyed. Our work provides a conceptual framework for the understanding of the existing and emerging strange-metal properties in kagome metals and beyond.Comment: 30 pages, 6 figures. To appear in Science Advance

    Fast Incremental SVDD Learning Algorithm with the Gaussian Kernel

    Full text link
    Support vector data description (SVDD) is a machine learning technique that is used for single-class classification and outlier detection. The idea of SVDD is to find a set of support vectors that defines a boundary around data. When dealing with online or large data, existing batch SVDD methods have to be rerun in each iteration. We propose an incremental learning algorithm for SVDD that uses the Gaussian kernel. This algorithm builds on the observation that all support vectors on the boundary have the same distance to the center of sphere in a higher-dimensional feature space as mapped by the Gaussian kernel function. Each iteration involves only the existing support vectors and the new data point. Moreover, the algorithm is based solely on matrix manipulations; the support vectors and their corresponding Lagrange multiplier αi\alpha_i's are automatically selected and determined in each iteration. It can be seen that the complexity of our algorithm in each iteration is only O(k2)O(k^2), where kk is the number of support vectors. Experimental results on some real data sets indicate that FISVDD demonstrates significant gains in efficiency with almost no loss in either outlier detection accuracy or objective function value.Comment: 18 pages, 1 table, 4 figure
    • …
    corecore