3 research outputs found

    Identification of B-Cell Epitopes of HspA from Helicobacter pylori and Detection of Epitope Antibody Profiles in Naturally Infected Persons

    No full text
    Helicobacter pylori (H. pylori), heat-shock protein A (HspA), is a bacterial heat-shock chaperone that serves as a nickel ion scavenging protein. Ni2+ is an important co-factor required for the maturation and enzymatic activity of H. pylori urease and [NiFe] hydrogenase, both of which are key virulence factors for pathogen survival and colonization. HspA is an important target molecule for the diagnosis, treatment, and immune prevention of H. pylori. In this work, HspA was truncated into five fragments to determine the location of an antigen immunodominant peptide. A series of overlapping, truncated 11-amino-acid peptides in immunodominant peptide fragments were synthesized chemically and screened by ELISA. The immunogenicity and antigenicity of the screened epitope peptides were verified by ELISA, Western blot, and lymphocyte proliferation tests. Two novel B-cell epitopes were identified, covering amino acids 2–31 of HspA, which are HP11 (2–12; KFQPLGERVLV) and HP19 (18–28; ENKTSSGIIIP). The antiserum obtained from HP11-KLH and HP19-KLH immunized mice can bind to naive HspA in H. pylori SS2000, rHspA expressed in E. coli, and the corresponding GST fusion peptide. Among HspA seropositive persons, the seropositive rates of HP11 and HP19 were 21.4% and 33.3%, respectively. Both of the B-cell epitopes of HspA are highly conserved epitopes with good antigenicity and immunogenicity
    corecore