16 research outputs found
RobustMQ: Benchmarking Robustness of Quantized Models
Quantization has emerged as an essential technique for deploying deep neural
networks (DNNs) on devices with limited resources. However, quantized models
exhibit vulnerabilities when exposed to various noises in real-world
applications. Despite the importance of evaluating the impact of quantization
on robustness, existing research on this topic is limited and often disregards
established principles of robustness evaluation, resulting in incomplete and
inconclusive findings. To address this gap, we thoroughly evaluated the
robustness of quantized models against various noises (adversarial attacks,
natural corruptions, and systematic noises) on ImageNet. The comprehensive
evaluation results empirically provide valuable insights into the robustness of
quantized models in various scenarios, for example: (1) quantized models
exhibit higher adversarial robustness than their floating-point counterparts,
but are more vulnerable to natural corruptions and systematic noises; (2) in
general, increasing the quantization bit-width results in a decrease in
adversarial robustness, an increase in natural robustness, and an increase in
systematic robustness; (3) among corruption methods, \textit{impulse noise} and
\textit{glass blur} are the most harmful to quantized models, while
\textit{brightness} has the least impact; (4) among systematic noises, the
\textit{nearest neighbor interpolation} has the highest impact, while bilinear
interpolation, cubic interpolation, and area interpolation are the three least
harmful. Our research contributes to advancing the robust quantization of
models and their deployment in real-world scenarios.Comment: 15 pages, 7 figure
Comparison between HIV self-testing and facility-based HIV testing approach on HIV early detection among men who have sex with men: A cross-sectional study
Background To assess whether HIV self-testing (HIVST) has a better performance in identifying HIV-infected cases than the facility-based HIV testing (HIVFBT) approach. Methods A cross-sectional study was conducted among men who have sex with men (MSM) by using an online questionnaire (including information on sociodemographic, sexual biography, and HIV testing history) and blood samples (for limiting antigen avidity enzyme immunoassay, gene subtype testing, and taking confirmed HIV test). MSM who were firstly identified as HIV positive through HIVST and HIVFBT were compared. Chi-square or Fisher’s exact test was used to explore any association between both groups and their subgroups. Results In total, 124 MSM HIV cases were identified from 2017 to 2021 in Zhuhai, China, including 60 identified through HIVST and 64 through HIVFBT. Participants in the HIVST group were younger (≤30 years, 76.7% vs. 46.9%), were better educated (>high school, 61.7% vs. 39.1%), and had higher viral load (≥1,000 copies/ml, 71.7% vs. 50.0%) than MSM cases identified through HIVFBT. The proportion of early HIV infection in the HIVST group was higher than in the HIVFBT group, identified using four recent infection testing algorithms (RITAs) (RITA 1, 46.7% vs. 25.0%; RITA 2, 43.3% vs. 20.3%; RITA 3, 30.0% vs. 14.1%; RITA 4, 26.7% vs. 10.9%; all p < 0.05). Conclusions The study showed that HIVST has better HIV early detection among MSM and that recent HIV infection cases mainly occur in younger and better-educated MSM. Compared with HIVFBT, HIVST is more accessible to the most at-risk population on time and tends to identify the case early. Further implementation studies are needed to fill the knowledge gap on this medical service model among MSM and other target populations
Analysis of Alterations of the Hydrological Situation and Causes of River Runoff in the Min River, China
Construction of water conservancy projects has changed the hydrological situation of rivers and has an essential impact on river ecosystems. The influence modes of different factors on runoff alterations are discussed to improve the development and utilization of water resources and promote ecological benefits. The ecological hydrological indicator change range method (IHA–RVA) and the hydrological alteration degree method were integrated to evaluate the hydrological situation of the Min River in China. Based on six Budyko hypothesis formulas, the rates of contribution of climate change and human activities to runoff change are quantitatively analyzed. The results show that (1) the runoff of the Min River basin showed a significant decreasing trend from 1960 to 2019 and a sudden alteration around 1993; (2) the overall alteration in runoff conditions was 45% moderate and the overall alteration in precipitation was 37% moderate; (3) precipitation and potential evapotranspiration also showed a decreasing trend within the same period but the overall trend was not significant; (4) the contribution of climate variability to runoff alterations is 30.2% and the contribution of human activities to runoff alterations is 69.8%; human activities are the dominant factor affecting the alteration of the runoff situation in the Min River basin
Instability Mechanism of Cavity-Bearing Formation under Tunnel Excavation Disturbance
Urban subway construction inevitably causes disturbances to the rock strata. It can even cause ground collapse accidents when construction encounters a bad geological body in the stratum. To verify the influence of cavities on surface settlement and the mechanism of formation instability, the instability mechanism of cavity-bearing strata under tunnel excavation disturbance was herein studied by tests using self-designed indoor models and numerical simulations. This study was based on the concrete project case of Qingdao Metro. Two groups of experiments (with and without cavities) were designed to simulate the four-step excavation by staged unloading of an airbag. The results show that the settlement value in the cavity state was about twice as much as that in the nonvoid state at the same stage. Besides the first step of excavation, in the numerical simulation, the settlement value of the same stage is about 1.3 times that of the model test. Simulating the deformation process of the surrounding rock in model tests shows that, in the excavation of the tunnel, the collapse surface of the tunnel arch roof will be connected with the sliding surface of the formation cavity. The cavity will gradually change from a regular circle to an ellipse or may even close, resulting in a sudden increase in land subsidence or even ground collapse. This indicates that disturbance during tunnel excavation would cause greater instability in a stratum when bad geological bodies, such as cavities, exist in the stratum
Graphene Far-Infrared Irradiation Can Effectively Relieve the Blood Pressure Level of Rat Untr-HT in Primary Hypertension
Graphene, when electrified, generates far-infrared radiation within the wavelength range of 4 μm to 14 μm. This range closely aligns with the far-infrared band (3 μm to 15 μm), which produces unique physiological effects. Contraction and relaxation of vascular smooth muscle play a significant role in primary hypertension, involving the nitric oxide-soluble guanylate cyclase–cyclic guanosine monophosphate pathway and the renin–angiotensin–aldosterone system. This study utilized spontaneously hypertensive rats (SHRs) as an untr-HT to investigate the impact of far-infrared radiation at specific wavelengths generated by electrified graphene on vascular smooth muscle and blood pressure. After 7 weeks, the blood pressure of the untr-HT group rats decreased significantly with a notable reduction in the number of vascular wall cells and the thickness of the vascular wall, as well as a decreased ratio of vessel wall thickness to lumen diameter. Additionally, blood flow perfusion significantly increased, and the expression of F-actin in vascular smooth muscle myosin decreased significantly. Serum levels of angiotensin II (Ang-II) and endothelin 1 (ET-1) were significantly reduced, while nitric oxide synthase (eNOS) expression increased significantly. At the protein level, eNOS expression decreased significantly, while α-SMA expression increased significantly in aortic tissue. At the gene level, expressions of eNOS and α-SMA in aortic tissue significantly increased. Furthermore, the content of nitric oxide (NO) in the SHR’s aortic tissue increased significantly. These findings confirm that graphene far-infrared radiation enhances microcirculation, regulates cytokines affecting vascular smooth muscle contraction, and modifies vascular morphology and smooth muscle phenotype, offering relief for primary hypertension
Hydrodynamics and heat transfer in a fluidized bed with liquid spray: Particle color-change based measurement and modelling
Fluidized beds with the liquid spray have been widely applied due to efficient heat transfer ability. In this work, the liquid-containing particles and the liquid dispersion pathway are visualized by a unique reversible thermochromic material (RTM) tracking method. The effects of evaporative liquid considering different nozzle modes on bubble density, particle motion and heat transfer are investigated combining PIV and DIA. The results indicate that the liquid injection decreases particle fluctuation and promotes bubble generation. A stable liquid-containing zone is observed under the top spray mode, whereas liquid disperses rapidly under the side-wall spray mode. A multi-zone heat transfer model (MHTM) is then developed based on the bubble growth and inter-layer exchange models. Experimental and calculated temperature profiles indicate that the side-wall spray mode leads to larger temperature differences. The methods proposed can be applied for the analysis of the complex multiphase system and optimization of the nozzle configuration.This work is supported by the National Natural Science Foundation of China for Young (No. 21808198), the Major Research Project of National Natural Science Foundation of China (91834303), the Natural Science Foundation of Zhejiang Province for Young (No. LQ18B060001), the National Science Fund for Distinguished Young (No. 21525627)
Drought and its ecological risk bundle from the perspective of watershed hydrological cycle
The mechanisms underlying the impacts of climate change and vegetation dynamics on hydrological drought in humid regions are still lacking. In this study, we connected the four components of meteorology-soil-vegetation-runoff to investigate the spatio-temporal response relationship between vegetation growth and different drought types. Based on the Variable Infiltration Capacity model and the Self-organizing Map Algorithm, we proposed ecological risk bundles at the grid scale to characterize the potential impacts of different types and levels of drought on vegetation. Furthermore, we quantified the driving impact of temporal and spatial changes in vegetation coverage on the propagation of meteorological-hydrological drought. The study found that the centers of gravity for the occurrence frequencies of extreme and mild drought shifted towards regions where vegetation growth was influenced by climate change. In certain regions of the watershed, vegetation exhibits significant spatial and temporal heterogeneity in its response to stress caused by different drought types. From 2004 to 2014, the stress on vegetation caused by moderate and mild meteorological droughts weakened, while soil moisture stress intensified after 2014. Simultaneously, the impacts of climate change and vegetation growth on runoff reached 48.25Â % and 35.13Â % respectively, and their synergistic effects triggered changes in the risk of co-concurrent return periods for hydrological drought events. Under the 100-year design return period, the co-occurrence return period of runoff shifted from its natural state of 162.9Â years to 52.8Â years, and the joint return period reversed its scenario, becoming shorter than the co-occurrence return period
Photoluminescence from Radiative Surface States and Excitons in Methylammonium Lead Bromide Perovskites
In view of its band gap of 2.2 eV and its stability, methylammonium lead bromide (MAPbBr3) is a possible candidate to serve as a light absorber in a subcell of a multijunction solar cell. Using complementary temperature-dependent time-resolved microwave conductance (TRMC) and photoluminescence (TRPL) measurements, we demonstrate that the exciton yield increases with lower temperature at the expense of the charge carrier generation yield. The low-energy emission at around 580 nm in the cubic phase and the second broad emission peak at 622 nm in the orthorhombic phase originate from radiative recombination of charges trapped in defects with mobile countercharges. We present a kinetic model describing both the decay in conductance as well as the slow ingrowth of the TRPL. Knowledge of defect states at the surface of various crystal phases is of interest to reach higher open-circuit voltages in MAPbBr3-based cells.ChemE/Opto-electronic Material
Wheat gliadin hydrolysates based nano-micelles for hydrophobic naringin: Structure characterization, interaction, and in vivo digestion
In this study, enzymatic hydrolysis was used to fabricate wheat gliadin hydrolysates (WGHs) for the encapsulation and protection of naringin. The exposure of hydrophilic amino acids decreased the critical micelle concentration (from 0.53 ± 0.02 mg/mL to 0.35 ± 0.03 mg/mL) and improved solubility, which provided amphiphilic conditions for the delivery of naringin. The hydrolysates with a degree of hydrolysis (DH) of 9 % had the strongest binding affinity with naringin, and exhibited the smallest particle size (113.7 ± 1.1 nm) and the highest encapsulation rate (83.2 ± 1.3 %). The storage, heat and photochemical stability of naringin were improved via the encapsulation of micelles. Furthermore, the micelles made up of hydrolysates with a DH of 12 % significantly enhanced the bioavailability of naringin (from 19.4 ± 4.3 % to 46.8 ± 1.4 %). Our experiment provides theoretical support for the utilization of delivery systems based on water-insoluble proteins
Hepatitis B virus promotes cancer cell migration by downregulating miR-340-5p expression to induce STAT3 overexpression
Abstract Background Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide, and infection with hepatitis B virus (HBV) is a leading cause of HCC. Previous studies have demonstrated that expression of the tumor inhibitor miR-340 is significantly downregulated in HCC tissues compared with normal liver tissues. However, the precise biological role of miR-340-5p in HBV–HCC and its molecular mechanism of action remain unknown. Results Expression of miR-340-5p was downregulated in HBV-associated HCC liver tissue and HBV-infected cells, facilitating migration of liver cancer cells. Signal transducer and activator of transcription (STAT)3 was found to be a direct functional target of miR-340-5p. The regulation of STAT3 expression by miR-340-5p was assessed using qRT-PCR and western blotting, and the effects of exogenous miR-340-5p and STAT3 on the migration of HBV-infected cells were evaluated in vitro using Transwell® and wound-healing assays. The expression of E-cadherin and vimentin, associated with epithelial–mesenchymal transition, was also assessed using Western blotting after transfection of miR-340-5p mimics and/or STAT3 expression vectors. Overexpression of STAT3 resulted in rescue of HBV effects, decreased E-cadherin expression, increased vimentin expression, and ultimately, enhanced cell migration. Re-introduction of the STAT3 CDS led to marked reversal of the inhibition of cell migration in HBV-infected cells mediated by miR-340-5p. Conclusions Hepatitis B virus promotes the migration of liver cancer cells by downregulating miR-340-5p expression to induce STAT3 overexpression. Our results show that STAT3 plays a key role in regulating cell migration in HBV–HCC involving miR-340-5p