20 research outputs found
Cloning and Expression of Aspergillus tamarii FS132 Lipase Gene in Pichia pastoris
A lipase gene (atl) was cloned from Aspergillus tamarii FS132 for the first time. The gene was found to have an open reading frame of 1024 base pairs (bp), and the coding region of the gene contained two introns (51 bp and 52 bp). Multi-alignment analysis of the deduced amino acid sequence indicated high homology between the enzyme and mono-and diacylglycerol lipases from fungi Aspergillus. The recombinant lipase was expressed in Pichia pastoris GS115 cells. The recombinant lipase was found to have a molecular mass of 36.7 kDa, and it exhibited lipase activity of 20 U/mL in culture supernatant when tributyrin was used as the substrate
A transcriptome analysis of mitten crab testes (Eriocheir sinensis)
The identification of expressed genes involved in sexual precocity of the mitten crab (Eriocheir sinensis) is critical for a better understanding of its reproductive development. To this end, we constructed a cDNA library from the rapid developmental stage of testis of E. sinensis and sequenced 3,388 randomly picked clones. After processing, 2,990 high-quality expressed sequence tags (ESTs) were clustered into 2,415 unigenes including 307 contigs and 2,108 singlets, which were then compared to the NCBI non-redundant (nr) protein and nucleotide (nt) database for annotation with Blastx and Blastn, respectively. After further analysis, 922 unigenes were obtained with concrete annotations and 30 unigenes were found to have functions possibly related to the process of reproduction in male crabs – six transcripts relevant to spermatogenesis (especially Cyclin K and RecA homolog DMC1), two transcripts involved in nuclear protein transformation, two heat-shock protein genes, eleven transcription factor genes (a series of zinc-finger proteins), and nine cytoskeleton protein-related genes. Our results, besides providing valuable information related to crustacean reproduction, can also serve as a base for future studies of reproductive and developmental biology
4-Chloro-5-(morpholin-4-yl)-2-[(5-phenyl-1,3,4-oxadiazol-2-yl)methyl]pyridazin-3(2H)-one
In the title compound, C17H16ClN5O3, the phenyl and the oxadiazole rings are almost coplanar, subtending a dihedral angle of 4.34 (19)°. These rings lie almost normal to the pyridazine ring, making dihedral angles of 87.35 (16) and 89.06 (15)°, respectively. The morpholine ring has the usual chair conformation and its mean plane is inclined to the pyridazine ring by 39.45 (17)°. There is a short intramolecular C—H...Cl contact present. In the crystal, molecules are linked by bifurcated C—(H,H)...O hydrogen bonds and a C—H...N hydrogen bond, forming layers parallel to the ab plane
Constructing Core Backbone Grid Based on the Index System of Power Grid Survivability and BBO Algorithm
Constructing core backbone grid is conducive to strengthen the construction of grid structure and improve the ability of withstanding natural disasters. The survivability index of power grid is made up of four indices, namely, the resistibility, recoverability, security, and connectivity. Based on survivability, a method of constructing core backbone grid with the optimal criteria of the minimal total line length and the largest integrated survivability index is put forward. The biogeography-based optimization (BBO) algorithm is used to search for the core backbone grid. Compared with the traditional algorithms, BBO algorithm shows advantages in fast speed of convergence and high convergence precision. Moreover, the searching results for three kinds of objective functions by BBO algorithm verify the effectiveness of the proposed model of constructing core backbone grid
Research and verification of internal and external measurement methods of large oil storage tanks capacity based on 3D lasers canning
Nowadays, as an important tool for petrochemical enterprises to store and transport various petrochemical products, large oil storage tanks are highly praised by a large number of oil enterprises because of their characteristics of large capacity and stable storage. For the same storage tank, on the premise of elevation determination, the accuracy of the measurement results for capacity actually mainly depends on the accurate measurement of the inner radius of each circle plate. In this paper, a 10000m3 stroage tank T1 is selected to measure the inner radius by strapping tape method, total station internal measurement method and 3D laser scanner internal and external measurement method. Through data comparison, the accuracy of the above methods for measuring the inner radius of the first circle plate of storage tank is discussed and verified, and the difference of measurement results and accuracy between internal and external measurement of ten circle plates of storage tank by 3D laser scanner. It is concluded that the external measurement method of 3D laser scanner based on the principle of cloud to cloud splicing has poor result in tank’s inner radius measurement, but it is feasible based on the principle of target ball splicing
Energy Consumption Reduction and Sustainable Development for Oil & Gas Transport and Storage Engineering
The oil & gas transport and storage (OGTS) engineering, from the upstream of gathering and processing in the oil & gas fields, to the midstream long-distance pipelines, and the downstream tanks and LNG terminals, while using supply chains to connect each part, is exploring its way to reduce energy consumption and carbon footprints. This work provides an overview of current methods and technological improvements and the latest trends in OGTS to show how this industry strives to achieve sustainable development goals. The critical analyses are from increasing flexibility, energy saving, emission reduction, and changing energy structure. The study shows the need to focus on improving energy efficiency further, reducing energy/water/material consumption and emissions, and maintaining safety for such an extensive oil & gas network
Energy Consumption Reduction and Sustainable Development for Oil & Gas Transport and Storage Engineering
The oil & gas transport and storage (OGTS) engineering, from the upstream of gathering and processing in the oil & gas fields, to the midstream long-distance pipelines, and the downstream tanks and LNG terminals, while using supply chains to connect each part, is exploring its way to reduce energy consumption and carbon footprints. This work provides an overview of current methods and technological improvements and the latest trends in OGTS to show how this industry strives to achieve sustainable development goals. The critical analyses are from increasing flexibility, energy saving, emission reduction, and changing energy structure. The study shows the need to focus on improving energy efficiency further, reducing energy/water/material consumption and emissions, and maintaining safety for such an extensive oil & gas network