9 research outputs found
Modeling of the Melting of Aluminum Particles during the RH Refining Process
The aluminum content in oriented silicon steel obviously influences its magnetic properties. In the current work, the movement and melting process of added aluminum particles during Ruhrstahl-Heraeus (RH) treatment were simulated using a mathematical approach, considering the effect of the multiphase fluid flow on the evolution of aluminum particles and the dissolved aluminum distribution. The current model was validated by the [Al] content in the molten steel measured by an industry experiment. Most of the added aluminum particles were melted within 5 s after they connected with the molten steel under the superheat of 28 K. The statistics of the melting time and trajectory length showed a normal distribution. Furthermore, both the melting time and the trajectory length of aluminum particles decreased as the superheat increased. Since the maximum mixing time may go up when the superheat is excessive, the suggested superheat should range from 20 K to 30 K during the RH refining process. Besides, an appropriate sampling position with a short mixing time was proposed