35 research outputs found

    Deep Neural Networks Guided Ensemble Learning for Point Estimation

    Full text link
    In modern statistics, interests shift from pursuing the uniformly minimum variance unbiased estimator to reducing mean squared error (MSE) or residual squared error. Shrinkage based estimation and regression methods offer better prediction accuracy and improved interpretation. However, the characterization of such optimal statistics in terms of minimizing MSE remains open and challenging in many problems, for example estimating treatment effect in adaptive clinical trials with pre-planned modifications to design aspects based on accumulated data. From an alternative perspective, we propose a deep neural network based automatic method to construct an improved estimator from existing ones. Theoretical properties are studied to provide guidance on applicability of our estimator to seek potential improvement. Simulation studies demonstrate that the proposed method has considerable finite-sample efficiency gain as compared with several common estimators. In the Adaptive COVID-19 Treatment Trial (ACTT) as an important application, our ensemble estimator essentially contributes to a more ethical and efficient adaptive clinical trial with fewer patients enrolled. The proposed framework can be generally applied to various statistical problems, and can be served as a reference measure to guide statistical research

    Efficiency of Two Sample Tests via the t-Mean Survival Time for Analyzing Event Time Observations

    Get PDF
    In comparing two treatments with the event time observations, the hazard ratio (HR) estimate is routinely used to quantify the treatment difference. However, this model dependent estimate may be difficult to interpret clinically especially when the proportional hazards (PH) assumption is violated. An alternative estimation procedure for treatment efficacy based on the restricted means survival time or t-year mean survival time (t-MST) has been discussed extensively in the statistical and clinical literature. On the other hand, a statistical test 1 via the HR or its asymptotically equivalent counterpart, the logrank test, is asymptotically distribution-free. In this paper, we assess the relative efficiency of the hazard ratio and t-MST tests with respect to the statistical power using various PH and non-PH models under theoretical and practical settings. When the PH assumption is valid, the t-MST test performs almost as well as the HR test. For non-PH models, the t-MST test can substantially outperform its HR counter- part. On the other hand, the HR test can be powerful when the true difference of two survival functions is quite large at end of the study. Unfortunately, for this case, the HR estimate may not have a simple clinical interpretation for the treatment effect due to the violation of the PH assumption
    corecore