221 research outputs found

    X-Ray and Gamma-Ray Polarization in Leptonic and Hadronic Jet Models of Blazars

    Full text link
    We present a theoretical analysis of the expected X-ray and gamma-ray polarization signatures resulting from synchrotron self-Compton emission in leptonic models, compared to the polarization signatures from proton synchrotron and cascade synchrotron emission in hadronic models for blazars. Source parameters resulting from detailed spectral-energy-distribution modeling are used to calculate photon-energy-dependent upper limits on the degree of polarization, assuming a perfectly organized, mono-directional magnetic field. In low-synchrotron-peaked blazars, hadronic models exhibit substantially higher maximum degrees of X-ray and gamma-ray polarization than leptonic models, which may be within reach for existing X-ray and gamma-ray polarimeters. In high-synchrotron-peaked blazars (with electron-synchrotron-dominated X-ray emission), leptonic and hadronic models predict the same degree of X-ray polarization, but substantially higher maximum gamma-ray polarization in hadronic models than leptonic ones. These predictions are particularly relevant in view of the new generation of balloon-borne X-ray polarimeters (and possibly GEMS, if revived), and the ability of Fermi-LAT to measure gamma-ray polarization at < 200 MeV. We suggest observational strategies combining optical, X-ray, gamma-ray polarimetry to determine the degree of ordering of the magnetic field and to distinguish between leptonic and hadronic high-energy emission.Comment: Accepted for publication in The Astrophysical Journa

    Radiation and Polarization Signatures of 3D Multi-zone Time-dependent Hadronic Blazar Model

    Full text link
    We present a newly developed time-dependent three-dimensional multi-zone hadronic blazar emission model. By coupling a Fokker-Planck based lepto-hadronic particle evolution code 3DHad with a polarization-dependent radiation transfer code, 3DPol, we are able to study the time-dependent radiation and polarization signatures of a hadronic blazar model for the first time. Our current code is limited to parameter regimes in which the hadronic γ\gamma-ray output is dominated by proton synchrotron emission, neglecting pion production. Our results demonstrate that the time-dependent flux and polarization signatures are generally dominated by the relation between the synchrotron cooling and the light crossing time scale, which is largely independent of the exact model parameters. We find that unlike the low-energy polarization signatures, which can vary rapidly in time, the high-energy polarization signatures appear stable. As a result, future high-energy polarimeters may be able to distinguish such signatures from the lower and more rapidly variable polarization signatures expected in leptonic models.Comment: Accepted for Publication in The Astrophysical Journa

    Synchrotron Polarization in Blazars

    Full text link
    We present a detailed analysis of time- and energy-dependent synchrotron polarization signatures in a shock-in-jet model for gamma-ray blazars. Our calculations employ a full 3D radiation transfer code, assuming a helical magnetic field throughout the jet. The code considers synchrotron emission from an ordered magnetic field, and takes into account all light-travel-time and other relevant geometric effects, while the relevant synchrotron self-Compton and external Compton effects are taken care of with the 2D MCFP code. We consider several possible mechanisms through which a relativistic shock propagating through the jet may affect the jet plasma to produce a synchrotron and high-energy flare. Most plausibly, the shock is expected to lead to a compression of the magnetic field, increasing the toroidal field component and thereby changing the direction of the magnetic field in the region affected by the shock. We find that such a scenario leads to correlated synchrotron + SSC flaring, associated with substantial variability in the synchrotron polarization percentage and position angle. Most importantly, this scenario naturally explains large PA rotations by > 180 deg., as observed in connection with gamma-ray flares in several blazars, without the need for bent or helical jet trajectories or other non-axisymmetric jet features.Comment: Submitted to Ap

    Fully Connected Crf With Data-driven Prior for Multi-class Brain Tumor Segmentation

    Get PDF

    Polarization Swings Reveal Magnetic Energy Dissipation in Blazars

    Full text link
    The polarization signatures of the blazar emissions are known to be highly variable. In addition to small fluctuations of the polarization angle around a mean value, sometimes large (> 180^o) polarization angle swings are observed. We suggest that such p henomena can be interpreted as arising from light-travel-time effects within an underlying axisymmetric emission region. We present the first simultaneous fitting of the multi-wavelength spectrum, variability and time-dependent polarization features of a correlated optical and gamma-ray flaring event of the prominent blazar 3C279, which was accompanied by a drastic change of its polarization signatures. This unprecedented combination of spectral, variability, and polarization information in a coherent physical model allows us to place stringent constraints on the particle acceleration and magnetic-field topology in the relativistic jet of a blazar, strongly favoring a scenario in which magnetic energy dissipation is the primary driver of the flare event.Comment: Accepted for Publication in The Astrophysical Journa
    corecore