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FULLY CONNECTED CRF WITH DATA-DRIVEN PRIOR FOR MULTI-CLASS BRAIN
TUMOR SEGMENTATION

Haocheng Shen and Jianguo Zhang

CVIP, Computing, School of Science and Engineering, University of Dundee, UK

ABSTRACT

Grid conditional random fields (CRFs) are widely applied in
both natural and medical image segmentation tasks. However,
they only consider the label coherence in neighborhood pix-
els or regions, which limits their ability to model long-range
connections within the image and generally results in exces-
sive smoothing of tumor boundaries. In this paper, we present
a novel method for brain tumor segmentation in MR images
based on fully-connected CRF (FC-CRF) model that estab-
lishes pairwise potentials on all pairs of pixels in the images.
We employ a hierarchical approach to differentiate different
structures of tumor and further formulate a FC-CRF model
with learned data-driven prior knowledge of tumor core. The
methods were evaluated on the testing and leaderboard set of
Brain Tumor Image Segmentation Benchmark (BRATS) 2013
challenge. The precision of segmented tumor boundaries is
improved significantly and the results are competitive com-
pared to the start-of-the-arts.

Index Terms— CRF, prior, brain tumor segmentation

1. INTRODUCTION

Gliomas are the most frequent primary brain tumors in adults
[1] and can be classified as high-grade(HG) or low-grade
(LG) based on the aggressive form of the disease. Fig. 1
shows a typical gliomas tumor in different modalities and
expert’s annotation. Normally there are four structures in
the tumor: edema(green), necrosis(red), non-enhancing tu-
mor(blue) and enhancing tumor(yellow). The last three also
make up a super-structure called tumor core. Automatic seg-
mentation of gliomas brain tumor is an active topic for decade
with challenges on the diversity and variation of tumor size,
shape, and location and appearance.

A common approach is to pose this problem as classifying
pixels into different tissues, followed by a CRF model which
incorporates smoothness terms that maximize label agree-
ment between pixels in the neighborhood [1, 2, 3]. However,
the resulting adjacency CRF is limited in its ability to model
long-range connections within the image and generally re-
sults in excessive smoothing of tumor boundaries. Clinically,
the precisely segmented boundaries of tumors are crucial for
making treatment plans as well as guiding surgery. Ignoring
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Fig. 1: (a) Tumor structures in different modalities:
edema(green), necrosis(red), non-enhancing tumor(blue) and
enhancing tumor(yellow). Best viewed in colour. (b) The
probability curve of being tumor core with respect to the dis-
tance to the centroid of the complete tumor region.

tumor boundaries may cause irreversible impact, for example,
the loss of brain functionality such as speaking or reading.
In the fully connected CRF, each node is assumed to be con-
nected with every other. Thus it is able to consider not only
short-range but also long-range interactions between pixels.
Efficient inference for fully connected (FC)-CRF was first
proposed by [4] for multi-class natural image segmentation
and it has been recently applied into medical image domain
[5, 6, 7]. Especially, [7] applied FC-CRF to brain tumor
segmentation but it only refined the boundaries between com-
plete tumor and background. Also a fair comparison between
fully-connected and grid CRF is missing.

In this paper, we propose an automatic method for brain
tumor segmentation based on FC-CRF. The main contribu-
tions of our paper include: 1) unlike [7], we apply FC-CRF
for multi-class brain tumour segmentation (complete tumor
and tumor core) through a hierarchical approach; 2) we con-
ducted a fair comparison between FC and grid CRF and
demonstrated that FC-CRF significantly improved the tumour
boundary segmentation accuracy with very small p-value; 3)
our approach is ranked top among automated methods on
BRATS 2013 testing set; 4) we introduce a prior-driven FC-
CRF and evaluated the effect of data-driven prior on different
sets and demonstrate the prior is helpful on larger datasets.



2. METHODS

We use a hierarchical approach to segment the tumor tissues.
In the first layer, we differentiate the non-tumor and tumor
tissues using FC-CRF model. On the resulting complete tu-
mor region, we apply the second layer to distinguish edema
and tumor core using another FC-CRF. The final layer further
partitions the segmented tumor core into necrosis, enhancing
and non-enhancing using classifier only as visually the necro-
sis could be some scatter points in the tumor core and does
not hold the assumption of local label consistency.

2.1. Fully-Connected CRF

Consider y = {yi} as a labeling defined over all voxels of
the 3D image in the domain of labels L = {0, 1}. The corre-
sponding Gibbs energy function over this label configuration
is composed of unary energy ψu and pairwise energy ψp:

E(y) =
∑
i

ψu(yi,xi) +
∑
i<j

ψp(yi, yj , fi, fj) (1)

where xi and (fi, fj) are the unary and pairwise features, re-
spectively. The unary potentials ψu(yi,xi) is computed in-
dependently for each voxel by a classifier that produces a
probability distribution over the labels given the feature. The
unary feature used in our implementation are described in
Section 3.1. Pairwise potentials defines a similarity function
of voxel features and labels to model their interactions. We
use a form of pairwise potential similar to that in [4]:

ψp(yi, yj , fi, fj) = µ(yi, yj)

M∑
m=1

w(m)k(m)(fi, fj) (2)

where each k(m)(., .) is a Gaussian kernel of an feature pair
(fi, fj), w(m) is a linear combination weight, and µ(yi, yj) is
a label compatibility function. Our pairwise kernels have the
following form:

k(fi, fj) =w
(1) exp(−|pi − pj |2

2θ2p
− |fi − fj |2

2θ2f
)+

w(2) exp(−|pi − pj |2

2θ2α
)

(3)

where pi and pj are the 3D coordinate vector of pixel i and
j. We use voxel intensities from different modalities as the
feature vector fi and fj . The degree of nearness and feature
similarity are controlled by parameter θp and θf . The sec-
ond Gaussian kernel term is used to smooth the segmentation
results and is controlled by parameter θα. The compatibility
function µ is given by the Potts model, µ(yi, yj) = [yi 6= yi].
It penalizes nearby similar pixels that are assigned different
labels.

Note that the pairwise potentials are a linear combination
of Gaussian kernels over a Euclidean feature space. We im-
plemented a 3D efficient inference approach on a permutohe-
dral lattice using bilateral filtering method [4, 8], which could
be completed in a linear time with respect to the number of
nodes rather than quadratic time.

2.2. Data-driven Prior for Tumor Core FC-CRF

One drawback of fully connected CRF is that it is sensitive
to the initialization based on the unary potential. In our case,
if the output from classifier is vague, it is challenge for CRF
to correct large regions of misclassified pixels (as shown in
Fig. 4(c)). In this section, we propose to utilize data-driven
prior with unary potential to improve the initialization of
fully connected CRF when distinguishing tumor core against
edema in the second layer of hierarchy.

We observed that although tumor can occur almost every-
where in the brain, one topology of tumor structures is ex-
plicit: the tumor core is usually surrounded by edema region.
Motivated by this observation, we build a probability model
to interpret the prior for the progressive level of the tumor
core in the complete tumor region. Such a probability model
is learned directly on the training set. Specifically, we calcu-
late the probability Pp representing the core progressive level
at voxel i with respect to its distance d to the centroid of the
the complete tumor region using the experts’ annotations. For
each complete tumor region Tj , we first estimate Pj(yi|d) =
Nyi/Nd where Nyi is the total number of voxels labeled as
yi ∈ {1,−1} (1 for tumor core and −1 for edema) within
distance d: Nyi = #

{
i|yi, γj ‖i− cj‖2 ≤ d, i ∈ Tj

}
where

cj is the centroid of tumor Tj . Nd is the total number of vox-
els within distance d: Nd = #

{
i|γj ‖i− cj‖2 ≤ d, i ∈ Tj

}
.

The final Pp is calculated based all of the n tumors, defined as

Pp(yi|d) =
∑n

j=1 Pj(yi|d)∑n
j=1

∑
yi
Pj(yi|d) = 1/n

∑n
j=1 Pj(yi|d). Con-

sidering the size of complete tumor region varies across dif-
ferent patients, the distance d within each tumor is normal-
ized into [0,1] using γj = maxi∈Tj ‖i− cj‖2, i.e., invariant
to scaling. As Pp is learned from training data, we call it data-
driven prior. To the best of our knowledge, such a prior has
not been explored before in MR brain tumor segmentation.

Fig.1(b) plots the learned probabilities of a voxel being
tumor core at different distances. The curves show a strong
progressive prior for tumor core in both HG and LG images:
the closer to the centroid, the higher probability the voxel be-
ing tumor core. The data-driven prior is further fitted with
a sigmoid function. When the voxel is further to the cen-
troid, its probability prior is more likely affected by the tumor
boundaries often of irregular shape. Therefore, we only cal-
culate and use the prior probability for voxels within the ball
with a radius of (µj + 2 ∗ σj) where µj and σj are the mean
and standard deviation of all distances within complete tumor
Tj . To incorporate this prior, the unary potential in the second



layer CRF is reformulated as:

ψu(yi,xi) = − log(w ∗Pc(yi|xi)+(1−w)∗Pp(yi|d)) (4)

where Pc(yi|xi) is the probability output of classifier andw is
the trade-off between classifier output and prior knowledge.

3. EVALUATION

We evaluated the proposed method on BRATS 2013 clinical
dataset. The dataset is comprised of 3 sub-datasets: 30 pa-
tients subjects (20 HGs and 10 LGs) with pixel-level annota-
tions for the training set; 10 (all HGs) for the testing set and
25 patient subjects(21 HGs and 4 LGs) for the leaderboard
set. For each subject there exists 4 modalities, namely T1,
T1-contrast (T1c), T2 and Flair which are all skull-stripped
and co-registered.

Quantitative evaluation on the test and leaderboard set is
through the on-line VSD evaluation system1 for three sub-
tasks: 1) the complete tumor region (including all four tu-
mor structures); 2) the core tumor region (including all tu-
mor structure except ”edema”); 3) the enhancing tumor re-
gion (including only the ”enhancing tumor” structure). For
each tumor region, Dice, Sensitivity (Se) and Positive Predic-
tive Value (PPV) are computed. Due to space limitation, we
only report Dice here as it is the most common metric for
segmentation task. The full metric tables are provided in the
supplemental file.

3.1. Implementation

For pre-processing, we first clip the intensity values to the
quantile range [0.01, 0.99] and then rescale intensities to [0,
1]. Finally, we normalize intensities of each brain MR image
with zero mean and unit standard deviation.

We choose the following unary features in our implemen-
tation: 1) intensity; 2) the hemispheric intensity difference
between two symmetric pixels in the axial view. The sym-
metric axis in the every axial slice is computed using the ap-
proach presented in [9]; 3) first order statistics in a 5× 5× 5
volume patch; and 4) maximum response filter (MR8) [10].
We extend the MR8 filter bank into 3D version by calculating
the original MR8 filter responses in saggital, axial and coronal
views separately, and then concatenate the responses together.

The above features are calculated for each voxel and each
modality. The features of all modalities are then concatenated
into the final 128-dimensional feature vector for each voxel.
We choose random forest as classifier.

3.2. Cross Validation

We compare FC and grid CRF on the training set using cross
validation. We train different models for HG and LG: 5-fold

1https://www.virtualskeleton.ch/

Table 1: Results of FC CRF and grid CRF in HG and LG
images.

Methods Dice
Complete Core Enhancing

Grid (HG) 0.85 0.71 0.72
FC (HG) 0.86 0.72 0.74

FC + Prior (HG) 0.86 0.74 0.73
Grid (LG) 0.86 0.63 N/A
FC (LG) 0.88 0.67 N/A

FC + Prior (LG) 0.88 0.70 N/A
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Fig. 2: Segmentation accuracy of complete tumor boundaries
w.r.t percentage of misclassified pixels within trimaps of dif-
ferent widths. (a) HG cases; (b) LG cases.

cross validation for 20 HG images and leave-one-out for 10
LG images. For grid CRF, we use the graph cuts toolbox from
[11]. All the parameters {θp, θf , θα,w} are learned by grid
search. The performance of FC and grid CRF are shown in
Table 1. It is clear that FC-CRF outperforms grid CRF in both
HG and LG images in all sub-tasks. To evaluate segmentation
accuracy around boundaries, we adopt the ”trimap” metric
for the complete tumors as the same as in [4]. Specifically,
we count the relative number of misclassified pixels within a
narrow band (”trimap”) surrounding actual tumor boundaries,
obtained from the experts’ ground truth. As shown in Fig. 2,
the FC-CRF outperforms grid CRF across all trimap widths.
We further conducted Wilcoxon signed-rank test on the re-
sults and reported the p-values for HG and LG cases, i.e., both
values are p = 7.8× 10−3, indicating that the improvements
are statistically significant in both cases. Two sample results
are shown in Fig. 3. It is obvious that FC-CRF generates more
accurate boundaries while grid CRF over-segments.

Using the model with data-driven prior (Eq.4) the per-
formance of tumor core segmentation can further increase.
Fig. 4(c)&(d) visualize some segmented regions of tumor core
by different models. Compared to the results without using
prior, it is obvious that prior-driven FC-CRF is capable of not
only correcting misclassified voxels in core regions but also
removing some false positives.



(a) (b) (c) (d)

Fig. 3: Visualization of result of grid and FC-CRF for com-
plete tumor region: (a) Flair modality; (b) ground truth; (c)
FC-CRF; (d) Grid CRF.

(a) (b) (c) (d)

Fig. 4: Visualization of results of FC-CRF and FC-CRF with
prior for tumor core (red) against edema (green): (a) T1c
modality; (b) ground truth; (c) FC-CRF; (d) FC-CRF with
prior. Best viewed in color.

3.3. Comparison with Best Performers

We then compare the proposed methods with currently pub-
lished state-of-the-arts on BRATS-2013 testing set. As it only
contains HG images, we only use the 20 HG training images
for training. The results are listed in Table 2. The method
of FC-CRF are in the top rank. Specifically, Tustison, Meier
and Reza are the best performers of BRATS 2013 challenge
[1]. Our method outperforms them all. Particularly, the win-
ner of BRATS 2013 challenge [2] is less efficient than ours as
it needs an auxiliary health brain dataset to do registration to
calculate the asymmetric feature while we only use the data
provided by the challenge. Our model is also slightly bet-
ter than [12] but worse than [13]. They both use the popular
Deep CNN model which is difficult to train without a modern
GPU. Note that although [13] performs best on this dataset,
they evaluated different experimental settings directly on the

Table 2: Comparison with the state-of-the-arts on testing set.

DiceMethod Complete Core Enhancing
Pereira [13] 0.88 0.83 0.77

FC-CRF(ours) 0.88 0.78 0.74
Tustison [2] 0.87 0.78 0.74
Havaei [12] 0.88 0.78 0.73

FC-CRF+Prior(ours) 0.88 0.75 0.74
Meier [1] 0.82 0.73 0.69
Reza [1] 0.83 0.72 0.72

Table 3: Comparison with the state-of-the-arts on leader-
board.

DiceMethod Complete Core Enhancing
Pereira [13] 0.84 0.72 0.62
Havaei [12] 0.84 0.71 0.57

FC-CRF+prior(ours) 0.81 0.65 0.55
FC-CRF(ours) 0.81 0.63 0.53

Tustison [2] 0.79 0.65 0.53
Reza [1] 0.72 0.60 0.53

testing set, which might lead to the model overfitted on the
testing set. It is shown that using prior knowledge decreases
the performance. As the testing images are relatively easier
compared to the training images [1], one possible reason is
the learned trade-off w in Eq.4 is overweighted where using
classifier output can already generate good enough results.

The leaderboard results are listed in Table 3. This set is
larger and relatively more challenge than testing set [1]. We
observe improvements of using data-driven prior of tumor
core. Our results are competitive with the state-of-the-arts
except the deep CNN model [12, 13], and are better than all
other shallow methods.

4. CONCLUSION

We proposed an automatic brain tumor segmentation method
based on fully connected CRF. We further learned a prior of
tumor cores and introduced a prior-driven FC-CRF for seg-
menting tumor cores. Though on the small set, prior does not
seem to improve performance, it shows positive and promis-
ing effect on the larger datasets from which the results are
more statistically conclusive and generalizable. Our results
are competitive with the start-of-the-arts in BRATS 2013 test-
ing and leaderboard set, and the segmented boundaries are
significantly improved. In the future, we will explore CNN
features within our framework.
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