1,320 research outputs found
Cosmological dynamics of scalar fields with O(N) symmetry
In this paper, we study the cosmological dynamics of scalar fields with O(N)
symmetry in general potentials. We compare the phase space of the dynamical
systems of the quintessence and phantom and give the conditions for the
existence of various attractors as well as their cosmological implications. We
also show that the existence of tracking attractor in O(N) phantom models
require the potential with , which makes the models with
exponential potential possess no tracking attractor.Comment: 9 pages, 4 figures; Replaced with the version to be published in
Classical and Quantum Gravity. Reference adde
CMBR Constraint on a Modified Chaplygin Gas Model
In this paper, a modified Chaplygin gas model of unifying dark energy and
dark matter with exotic equation of state
which can also explain the recent accelerated expansion of the universe is
investigated by the means of constraining the location of the peak of the CMBR
spectrum. We find that the result of CMBR measurements does not exclude the
nonzero value of parameter , but allows it in the range .Comment: 4 pages, 3 figure
Attractor Solution of Phantom Field
In light of recent study on the dark energy models that manifest an equation
of state , we investigate the cosmological evolution of phantom field in
a specific potential, exponential potential in this paper. The phase plane
analysis show that the there is a late time attractor solution in this model,
which address the similar issues as that of fine tuning problems in
conventional quintessence models. The equation of state is determined by
the attractor solution which is dependent on the parameter in the
potential. We also show that this model is stable for our present observable
universe.Comment: 9 pages, 3 ps figures; typos corrected, references updated, this is
the final version to match the published versio
New mechanism to cross the phantom divide
Recently, type Ia supernovae data appear to support a dark energy whose
equation of state crosses -1, which is a much more amazing problem than the
acceleration of the universe. We show that it is possible for the equation of
state to cross the phantom divide by a scalar field in the gravity with an
additional inverse power-law term of Ricci scalar in the Lagrangian. The
necessary and sufficient condition for a universe in which the dark energy can
cross the phantom divide is obtained. Some analytical solutions with or
are obtained. A minimal coupled scalar with different potentials,
including quadratic, cubic, quantic, exponential and logarithmic potentials are
investigated via numerical methods, respectively. All these potentials lead to
the crossing behavior. We show that it is a robust result which is hardly
dependent on the concrete form of the potential of the scalar.Comment: 11 pages, 5 figs, v3: several references added, to match the
published versio
Phantom Field with O(N) Symmetry in Exponential Potential
In this paper, we study the phase space of phantom model with O(\emph{N})
symmetry in exponential potential. Different from the model without O(\emph{N})
symmetry, the introduction of the symmetry leads to a lower bound on the
equation of state for the existence of stable phantom dominated attractor
phase. The reconstruction relation between the potential of O(\textit{N})
phantom system and red shift has been derived.Comment: 5 pages, 3 figures, replaced with the version to appear on Phys. Rev.
Seasonal variations in aerosol optical properties over China
International audienceThe seasonal variations in background aerosol optical depth (AOD) and aerosol type are investigated over various ecosystems in China based upon three years' worth of meteorological data and data collected by the Chinese Sun Hazemeter Network. In most parts of China, AODs are at a maximum in spring or summer and at a minimum in autumn or winter. Minimum values (0.10~0.20) of annual mean AOD at 500 nm are found in the Qinghai-Tibetan Plateau, which is located in the remote northeast corner of China, the northern forest ecosystems and Hainan Island. Annual mean AOD ranges from 0.25 to 0.30 over desert and oasis areas as well as the desertification grasslands in northern China; the annual mean AOD over the Loess Plateau is moderately high at 0.36. Regions where the highest density of agricultural and industrial activities are located and where anthropogenic sulphate aerosol and soil aerosol emissions are consistently high throughout the whole year (e.g. the central-eastern, southern and eastern coastal regions of China) experience annual mean AODs ranging from 0.50~0.80. Remarkable seasonal changes in the main types of aerosol over northern China (characterized by the Angstrom exponent, ?) are seen. Due to biomass and fossil fuel burning from extensive agricultural practices in northern rural areas, concentrations of smoke and soot aerosols rise dramatically during autumn and winter (high ?), while the main types of aerosol during spring and summer are dust and soil aerosols (low ?). Over southeast Asia, biomass burning during the spring leads to increases in smoke and soot emissions. Over the Tibetan Plateau and Hainan Island where the atmosphere is pristine, the main types of aerosol are dust and sea salt, respectively
- …