6,055 research outputs found

    Model Selection for High Dimensional Quadratic Regression via Regularization

    Full text link
    Quadratic regression (QR) models naturally extend linear models by considering interaction effects between the covariates. To conduct model selection in QR, it is important to maintain the hierarchical model structure between main effects and interaction effects. Existing regularization methods generally achieve this goal by solving complex optimization problems, which usually demands high computational cost and hence are not feasible for high dimensional data. This paper focuses on scalable regularization methods for model selection in high dimensional QR. We first consider two-stage regularization methods and establish theoretical properties of the two-stage LASSO. Then, a new regularization method, called Regularization Algorithm under Marginality Principle (RAMP), is proposed to compute a hierarchy-preserving regularization solution path efficiently. Both methods are further extended to solve generalized QR models. Numerical results are also shown to demonstrate performance of the methods.Comment: 37 pages, 1 figure with supplementary materia

    Sparsifying the Fisher Linear Discriminant by Rotation

    Full text link
    Many high dimensional classification techniques have been proposed in the literature based on sparse linear discriminant analysis (LDA). To efficiently use them, sparsity of linear classifiers is a prerequisite. However, this might not be readily available in many applications, and rotations of data are required to create the needed sparsity. In this paper, we propose a family of rotations to create the required sparsity. The basic idea is to use the principal components of the sample covariance matrix of the pooled samples and its variants to rotate the data first and to then apply an existing high dimensional classifier. This rotate-and-solve procedure can be combined with any existing classifiers, and is robust against the sparsity level of the true model. We show that these rotations do create the sparsity needed for high dimensional classifications and provide theoretical understanding why such a rotation works empirically. The effectiveness of the proposed method is demonstrated by a number of simulated and real data examples, and the improvements of our method over some popular high dimensional classification rules are clearly shown.Comment: 30 pages and 9 figures. This paper has been accepted by Journal of the Royal Statistical Society: Series B (Statistical Methodology). The first two versions of this paper were uploaded to Bin Dong's web site under the title "A Rotate-and-Solve Procedure for Classification" in 2013 May and 2014 January. This version may be slightly different from the published versio

    Variance Estimation Using Refitted Cross-validation in Ultrahigh Dimensional Regression

    Full text link
    Variance estimation is a fundamental problem in statistical modeling. In ultrahigh dimensional linear regressions where the dimensionality is much larger than sample size, traditional variance estimation techniques are not applicable. Recent advances on variable selection in ultrahigh dimensional linear regressions make this problem accessible. One of the major problems in ultrahigh dimensional regression is the high spurious correlation between the unobserved realized noise and some of the predictors. As a result, the realized noises are actually predicted when extra irrelevant variables are selected, leading to serious underestimate of the noise level. In this paper, we propose a two-stage refitted procedure via a data splitting technique, called refitted cross-validation (RCV), to attenuate the influence of irrelevant variables with high spurious correlations. Our asymptotic results show that the resulting procedure performs as well as the oracle estimator, which knows in advance the mean regression function. The simulation studies lend further support to our theoretical claims. The naive two-stage estimator which fits the selected variables in the first stage and the plug-in one stage estimators using LASSO and SCAD are also studied and compared. Their performances can be improved by the proposed RCV method
    corecore