20,927 research outputs found

    Direct measurement of penetration length in ultra-thin and/or mesoscopic superconducting structures

    Get PDF
    We describe a method for direct measurement of the magnetic penetration length in thin (10 - 100 nm) superconducting structures having overall dimensions in the range 1 to 100 micrometers. The method is applicable for broadband magnetic fields from dc to MHz frequencies.Comment: Accepted by Journal of Applied P:hysics (Jun 2006).5 pages, 5 figure

    Rate Splitting for MIMO Wireless Networks: A Promising PHY-Layer Strategy for LTE Evolution

    Get PDF
    MIMO processing plays a central part towards the recent increase in spectral and energy efficiencies of wireless networks. MIMO has grown beyond the original point-to-point channel and nowadays refers to a diverse range of centralized and distributed deployments. The fundamental bottleneck towards enormous spectral and energy efficiency benefits in multiuser MIMO networks lies in a huge demand for accurate channel state information at the transmitter (CSIT). This has become increasingly difficult to satisfy due to the increasing number of antennas and access points in next generation wireless networks relying on dense heterogeneous networks and transmitters equipped with a large number of antennas. CSIT inaccuracy results in a multi-user interference problem that is the primary bottleneck of MIMO wireless networks. Looking backward, the problem has been to strive to apply techniques designed for perfect CSIT to scenarios with imperfect CSIT. In this paper, we depart from this conventional approach and introduce the readers to a promising strategy based on rate-splitting. Rate-splitting relies on the transmission of common and private messages and is shown to provide significant benefits in terms of spectral and energy efficiencies, reliability and CSI feedback overhead reduction over conventional strategies used in LTE-A and exclusively relying on private message transmissions. Open problems, impact on standard specifications and operational challenges are also discussed.Comment: accepted to IEEE Communication Magazine, special issue on LTE Evolutio

    Zero-sum triangles for involutory, idempotent, nilpotent and unipotent matrices

    Get PDF
    In some matrix formations, factorizations and transformations, we need special matrices with some properties and we wish that such matrices should be easily and simply generated and of integers. In this paper, we propose a zero-sum rule for the recurrence relations to construct integer triangles as triangular matrices with involutory, idempotent, nilpotent and unipotent properties, especially nilpotent and unipotent matrices of index 2. With the zero-sum rule we also give the conditions for the special matrices and the generic methods for the generation of those special matrices. Some of the generated integer triangles have been found by other methods, but most of them are newly discovered, and many combinatorial identities can be found with them. The results may also interest the economists for trading analysis and simulation

    Charge-Density-Wave Ordering in the Metal-Insulator Transition Compound PrRu4P12

    Get PDF
    X-ray and electron diffraction measurements on the metal-insulator (M-I) transition compound PrRu4_4P12_{12} have revealed the emergence of a periodic ordering of charge density around the Pr atoms. It is found that the ordering is associated with the onset of a low temperature insulator phase. These conclusions are supported by the facts that the space group of the crystal structure transforms from Im3ˉ\bar{3} to Pm3ˉ\bar{3} below the M-I transition temperature and also that the temperature dependence of the superlattice peaks in the insulator phase follows the squared BCS function. The M-I transition could be originated from the perfect nesting of the Fermi surface and/or the instability of the ff electrons.Comment: 4 pages, 5 figures, Phys. Rev. B (2004) (in press

    Systematic Distortion in Cosmic Microwave Background Maps

    Full text link
    To minimize instrumentally induced systematic errors, cosmic microwave background (CMB) anisotropy experiments measure temperature differences across the sky using paires of horn antennas, temperature map is recovered from temperature differences obtained in sky survey through a map-making procedure. To inspect and calibrate residual systematic errors in recovered temperature maps is important as most previous studies of cosmology are based on these maps. By analyzing pixel-ring couping and latitude dependence of CMB temperatures, we find notable systematic deviation from CMB Gaussianity in released Wilkinson Microwave Anisotropy Probe (WMAP) maps. The detected deviation is hard to explain by any process in the early universe and can not be ignored for a precision cosmology study.Comment: accepted for publication in Sci China G-Phy Mech Astro

    Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes

    Get PDF
    This paper extends the study and prototyping of unusual DNA motifs, unknown in nature, but founded on principles derived from biological structures. Artificially designed DNA complexes show promise as building blocks for the construction of useful nanoscale structures, devices, and computers. The DNA triple crossover (TX) complex described here extends the set of experimentally characterized building blocks. It consists of four oligonucleotides hybridized to form three double-stranded DNA helices lying in a plane and linked by strand exchange at four immobile crossover points. The topology selected for this TX molecule allows for the presence of reporter strands along the molecular diagonal that can be used to relate the inputs and outputs of DNA-based computation. Nucleotide sequence design for the synthetic strands was assisted by the application of algorithms that minimize possible alternative base-pairing structures. Synthetic oligonucleotides were purified, stoichiometric mixtures were annealed by slow cooling, and the resulting DNA structures were analyzed by nondenaturing gel electrophoresis and heat-induced unfolding. Ferguson analysis and hydroxyl radical autofootprinting provide strong evidence for the assembly of the strands to the target TX structure. Ligation of reporter strands has been demonstrated with this motif, as well as the self-assembly of hydrogen-bonded two-dimensional crystals in two different arrangements. Future applications of TX units include the construction of larger structures from multiple TX units, and DNA-based computation. In addition to the presence of reporter strands, potential advantages of TX units over other DNA structures include space for gaps in molecular arrays, larger spatial displacements in nanodevices, and the incorporation of well-structured out-of-plane components in two-dimensional arrays

    Role of p-f Hybridization in the Metal-Non-Metal Transition of PrRu4P12

    Full text link
    Electronic state evolution in the metal-non-metal transition of PrRu4P12 has been studied by X-ray and polarized neutron diffraction experiments. It has been revealed that, in the low-temperature non-metallic phase, two inequivalent crystal-field (CF) schemes of Pr3+ 4f^2 electrons with Gamma_1 and Gamma_4^(2) ground states are located at Pr1 and Pr2 sites forming the bcc unit cell surrounded by the smaller and larger cubic Ru-ion sublattices, respectively. This modulated electronic state can be explained by the p-f hybridization mechanism taking two intermediate states of 4f^1 and 4f^3. The p-f hybridization effect plays an important role for the electronic energy gain in the metal-non-metal transition originated from the Fermi surface nesting.Comment: 5 pages, 5 figures. Accepted by J. Phys. Soc. Jp

    Solving the Dirac equation with nonlocal potential by Imaginary Time Step method

    Full text link
    The Imaginary Time Step (ITS) method is applied to solve the Dirac equation with the nonlocal potential in coordinate space by the ITS evolution for the corresponding Schr\"odinger-like equation for the upper component. It is demonstrated that the ITS evolution can be equivalently performed for the Schr\"odinger-like equation with or without localization. The latter algorithm is recommended in the application for the reason of simplicity and efficiency. The feasibility and reliability of this algorithm are also illustrated by taking the nucleus 16^{16}O as an example, where the same results as the shooting method for the Dirac equation with localized effective potentials are obtained
    corecore