88 research outputs found

    Data_Sheet_1_Do non-citizens migrate for welfare benefits? Evidence from the Affordable Care Act Medicaid expansion.pdf

    No full text
    We explore if low-educated noncitizens, who have a considerably high uninsured rate, internally migrate to states with more generous public insurance benefits. We utilize the state-level variation in accessing Medicaid benefits and employ a difference-in-differences methodology that compares in-migration and out-migration rates of non-citizens in states that adopted Medicaid expansion, both before and after the policy implementation, to the outcomes of non-citizens in states that did not adopt the expansion. We find that interstate in-migration (out-migration) rates of Medicaid expansion states did not increase (decrease) relative to that of non-expansion states after the expansion.</p

    Catalytic Asymmetric Synthesis of Tröger’s Base Analogues with Nitrogen Stereocenter

    No full text
    Nitrogen stereocenters are common chiral units in natural products, pharmaceuticals, and chiral catalysts. However, their research has lagged largely behind, compared with carbon stereocenters and other heteroatom stereocenters. Herein, we report an efficient method for the catalytic asymmetric synthesis of Tröger’s base analogues with nitrogen stereocenters via palladium catalysis and home-developed GF-Phos. It allows rapid construction of a new rigid cleft-like structure with both a C- and a N-stereogenic center in high efficiency and selectivity. A variety of applications as a chiral organocatalyst and metallic catalyst precursors were demonstrated. Furthermore, DFT calculations suggest that the NH···O hydrogen bonding and weak interaction between the substrate and ligand are crucial for the excellent enantioselectivity control

    Catalytic Asymmetric Synthesis of Tröger’s Base Analogues with Nitrogen Stereocenter

    No full text
    Nitrogen stereocenters are common chiral units in natural products, pharmaceuticals, and chiral catalysts. However, their research has lagged largely behind, compared with carbon stereocenters and other heteroatom stereocenters. Herein, we report an efficient method for the catalytic asymmetric synthesis of Tröger’s base analogues with nitrogen stereocenters via palladium catalysis and home-developed GF-Phos. It allows rapid construction of a new rigid cleft-like structure with both a C- and a N-stereogenic center in high efficiency and selectivity. A variety of applications as a chiral organocatalyst and metallic catalyst precursors were demonstrated. Furthermore, DFT calculations suggest that the NH···O hydrogen bonding and weak interaction between the substrate and ligand are crucial for the excellent enantioselectivity control

    Reactivity Switch Enabled by Counterion: Highly Chemoselective Dimerization and Hydration of Terminal Alkynes

    No full text
    A counterion-controlled reactivity tuning in Pd-catalyzed highly chemoselective and regioselective dimerization and hydration of terminal alkynes is reported. The use of acetate as counterion favors the formation of an alkenyl alkynyl palladium intermediate which forms hitherto less reported 1,3-diaryl-substituted conjugated enynes after reductive elimination. Using chloride, which is a better leaving group, leads to anion exchange on the alkenylpalladium intermediate with hydroxide which after reductive elimination and tautomerization delivered the hydration products

    Image_1_Integrative proteomic and physiological analyses of the molecular response to dessication-stress in Auricularia fibrillifera.JPEG

    No full text
    Drought stress is one of the main factors influencing the growth and development of an organism. Auricularia fibrillifera has strong dessication resistance. In A. fibrillifera under dessication-stress, the melanin content of fruiting bodies elevated significantly by >10-fold compared with the control. Folate content also increased sharply but decreased significantly after rehydration, and amino acid and biotin levels increased by 40.11 and 22.14%, respectively. In proteomic analysis, 1,572 and 21 differentially abundant proteins (DAPs) were identified under dessication-stress and rehydration, respectively. A large number of DAPs were annotated in “amino acid metabolism,” “carbohydrate metabolism,” and “translation” pathways, and the DAPs related to osmotic regulation and antioxidant enzymes were significantly increased in abundance. Transcriptome-proteome association analysis showed that most DAPs (30) were annotated in the “biosynthesis of antibiotics” pathway. DAPs and corresponding differentially expressed genes were all up-regulated in the “biotin biosynthesis” pathway and associated with “folate biosynthesis” and “phenylalanine, tyrosine, and tryptophan biosynthesis.” In the analysis of protein–protein interactions, the DAPs annotated in the “phenylalanine, tyrosine, and tryptophan biosynthesis” pathway had the strongest interactions with other DAPs. These enriched pathways could enhance amino acid, folate, biotin, and melanin levels during desiccation stress, which is consistent with the physiological data (amino acid, folate, biotin, and melanin contents). In addition, many DAPs related to the cytoskeleton were significantly increased in abundance under dessication-stress. Physiological and transcriptome data were in agreement with proteomic results. This work provides valuable insight into the dessication-tolerant mechanisms of A. fibrillifera.</p

    Table_1_Integrative proteomic and physiological analyses of the molecular response to dessication-stress in Auricularia fibrillifera.XLSX

    No full text
    Drought stress is one of the main factors influencing the growth and development of an organism. Auricularia fibrillifera has strong dessication resistance. In A. fibrillifera under dessication-stress, the melanin content of fruiting bodies elevated significantly by >10-fold compared with the control. Folate content also increased sharply but decreased significantly after rehydration, and amino acid and biotin levels increased by 40.11 and 22.14%, respectively. In proteomic analysis, 1,572 and 21 differentially abundant proteins (DAPs) were identified under dessication-stress and rehydration, respectively. A large number of DAPs were annotated in “amino acid metabolism,” “carbohydrate metabolism,” and “translation” pathways, and the DAPs related to osmotic regulation and antioxidant enzymes were significantly increased in abundance. Transcriptome-proteome association analysis showed that most DAPs (30) were annotated in the “biosynthesis of antibiotics” pathway. DAPs and corresponding differentially expressed genes were all up-regulated in the “biotin biosynthesis” pathway and associated with “folate biosynthesis” and “phenylalanine, tyrosine, and tryptophan biosynthesis.” In the analysis of protein–protein interactions, the DAPs annotated in the “phenylalanine, tyrosine, and tryptophan biosynthesis” pathway had the strongest interactions with other DAPs. These enriched pathways could enhance amino acid, folate, biotin, and melanin levels during desiccation stress, which is consistent with the physiological data (amino acid, folate, biotin, and melanin contents). In addition, many DAPs related to the cytoskeleton were significantly increased in abundance under dessication-stress. Physiological and transcriptome data were in agreement with proteomic results. This work provides valuable insight into the dessication-tolerant mechanisms of A. fibrillifera.</p

    Development of Cyclic Tetrasiloxane Polymer as a High-Performance Dielectric and Hydrophobic Layer for Electrowetting Displays

    No full text
    Cyclic tetrasiloxane polymer (CTP) has recently garnered interest as a hydrophobic material with unique properties. This study aims to enhance the dielectric constant of CTP films by introducing excess Si–H groups and to explore the impact of synthesis and processing conditions on the resulting properties. The film demonstrates high hydrophobicity, with contact angles of 107° in air and 165° in n-decane, along with a notable dielectric constant of 5.1°. Furthermore, the CTP film displays reversible electrowetting behavior with low contact angle hysteresis (2°) and possesses good transparency (∼99%) and thermal stability. As such, the CTP film has significant potential as a material for the electric wetting of hydrophobic dielectric layers and may serve as a promising alternative in electrowetting applications
    corecore