165 research outputs found
Preference-based Detailed Feedback Management for E-commerce Applications
A poster discussing feedback in consumer to consumer economic environments
Faster Projected GAN: Towards Faster Few-Shot Image Generation
In order to solve the problems of long training time, large consumption of
computing resources and huge parameter amount of GAN network in image
generation, this paper proposes an improved GAN network model, which is named
Faster Projected GAN, based on Projected GAN. The proposed network is mainly
focuses on the improvement of generator of Projected GAN. By introducing depth
separable convolution (DSC), the number of parameters of the Projected GAN is
reduced, the training speed is accelerated, and memory is saved. Experimental
results show that on ffhq-1k, art-painting, Landscape and other few-shot image
datasets, a 20% speed increase and a 15% memory saving are achieved. At the
same time, FID loss is less or no loss, and the amount of model parameters is
better controlled. At the same time, significant training speed improvement has
been achieved in the small sample image generation task of special scenes such
as earthquake scenes with few public datasets.Comment: 9 pages,7 figures,4 table
Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources
It is well known that urbanization and industrialization have resulted in the rapidly increasing emissions of volatile organic compounds (VOCs), which are a major contributor to the formation of secondary pollutants (e.g., tropospheric ozone, PAN (peroxyacetyl nitrate), and secondary organic aerosols) and photochemical smog. The emission of these pollutants has led to a large decline in air quality in numerous regions around the world, which has ultimately led to concerns regarding their impact on human health and general well-being. Catalytic oxidation is regarded as one of the most promising strategies for VOC removal from industrial waste streams. This Review systematically documents the progresses and developments made in the understanding and design of heterogeneous catalysts for VOC oxidation over the past two decades. It addresses in detail how catalytic performance is often drastically affected by the pollutant sources and reaction conditions. It also highlights the primary routes for catalyst deactivation and discusses protocols for their subsequent reactivation. Kinetic models and proposed oxidation mechanisms for representative VOCs are also provided. Typical catalytic reactors and oxidizers for industrial VOC destruction are further discussed. We believe that this Review will provide a great foundation and reference point for future design and development in this field
Sphere-shaped Mn3O4 catalyst with remarkable low-temperature activity for Methyl-Ethyl-Ketone combustion
Mn3O4, FeMnOx, and FeOx catalysts synthesized via a solvothermal method were employed for catalytic oxidation of methylâethylâketone (MEK) at low temperature. Mn3O4 with sphere-like morphology exhibited the highest activity for MEK oxidation, over which MEK was completely oxidized to CO2 at 200 °C, and this result can be comparable to typical noble metal loaded catalysts. The activation energy of MEK over Mn3O4 (30.8 kJ/mol) was much lower than that of FeMnOx (41.5 kJ/mol) and FeOx (47.8 kJ/mol). The dominant planes, surface manganese species ratio, surface-absorbed oxygen, and redox capability played important roles in the catalytic activities of catalysts, while no significant correlation was found between specific surface area and MEK removal efficiency. Mn3O4 showed the highest activity,
accounting for abundant oxygen vacancies, low content of surface Mn4+ and strong reducibility. The oxidation of MEK to CO2 via an intermediate of diacetyl is a reaction pathway on Mn3O4 catalyst. Due to high efficiency and low cost, sphere-shaped Mn3O4 is a promising catalyst for VOCs abatement
Atomic-scale insights into the low-temperature oxidation of methanol over a single-atom Pt1-Co3O4 catalyst
Heterogeneous catalysts with singleâatom active sites offer a means of expanding the industrial application of noble metal catalysts. Herein, an atomically dispersed Pt1âCo3O4 catalyst is presented, which exhibits an exceptionally high efficiency for the total oxidation of methanol. Experimental and theoretical investigations indicate that this catalyst consists of Pt sites with a large proportion of occupied high electronic states. These sites possess a strong affinity for inactive Co2+ sites and anchor over the surface of (111) crystal plane, which increases the metalâsupport interaction of the Pt1âCo3O4 material and accelerates the rate of oxygen vacancies regeneration. In turn, this is determined to promote the coadsorption of the probe methanol molecule and O2. Density functional theory calculations confirm that the electron transfer over the oxygen vacancies reduces both the methanol adsorption energy and activation barriers for methanol oxidation, which is proposed to significantly enhance the dissociation of the CH bond in the methanol decomposition reaction. This investigation serves as a solid foundation for characterizing and understanding singleâatom catalysts for heterogeneous oxidation reactions
Catalytic removal of 1,2-dichloroethane over LaSrMnCoO6/H-ZSM-5 composite: insights into synergistic effect and pollutant-destruction mechanism
LaxSr2âxMnCoO6 materials with different Sr contents were prepared by a coprecipitation method, with LaSrMnCoO6 found to be the best catalyst for 1,2-dichloroethane (DCE) destruction (T90 = 509 °C). As such, a series of LaSrMnCoO6/H-ZSM-5 composite materials were rationally synthesized to further improve the catalytic activity of LaSrMnCoO6. As expected, the introduction of H-ZSM-5 could remarkably enlarge the surface area, increase the number of Lewis acid sites, and enhance the mobility of the surface adsorbed oxygen species, which consequently improved the catalytic activity of LaSrMnCoO6. Among all the composite materials, 10 wt% LaSrMnCoO6/H-ZSM-5 possessed the highest catalytic activity, with 90% of 1,2-DCE destructed at 337 °C, which is a temperature reduction of more than 70 °C and 170 °C compared with that of H-ZSM-5 (T90 = 411 °C) and LaSrMnCoO6 (T90 = 509 °C), respectively. Online product analysis revealed that CO2, CO, HCl, and Cl2 were the primary products in the oxidation of 1,2-DCE, while several unfavorable reaction by-products, such as vinyl chloride, 1,1,2-trichloroethane, trichloroethylene, perchloroethylene, and acetaldehyde, were also formed via dechlorination and dehydrochlorination processes. Based on the above results, the reaction path and mechanism of 1,2-DCE decomposition are proposed
Low-temperature direct dehydrogenation of propane over binary oxide catalysts: insights into geometric effects and active sites
Binary ZnZrxOy catalysts were prepared and employed to catalyze propane dehydrogenation at relatively low temperatures. The evaluation of these materials for propane dehydrogenation was supplemented by material characterization and density functional theory calculations, to provide molecular insights into the nature of the catalytic active sites. Combined, these experiments suggested that coordinatively unsaturated Zn cations (Zncus) in ZncusâOâZrcus were the active sites for the first step of propane dehydrogenation, and coordinatively unsaturated Zr cations (Zrcus) in ZncusâOâZrcus were active sites for the second step. This synergistic effect, derived from both these components, led to significant enhancements in activity. Furthermore, the combination of Zn and Zr species resulted in notable changes to the structure of the catalysts, leading to both the formation of the Zrcus active site and improved oxygen mobility. ZnZr2 exhibited relatively high activity
Understanding the promotional effect of Mn2O3 on micro-/mesoporous hybrid silica nanocubic-supported Pt catalysts for the low-temperature destruction of methyl ethyl ketone: An experimental and theoretical study
Pt0.3Mnx/SiO2 nanocubic (nc) micro-/mesoporous composite catalysts with varied Mn contents were synthesized and tested for the oxidation of methyl ethyl ketone (MEK). Results show that MEK can be efficiently decomposed over synthesized Pt0.3Mnx/SiO2-nc materials with a reaction rate and turnover frequency respectively higher than 12.7 mmol gPtâ1 sâ1 and 4.7 sâ1 at 100 °C. Among these materials, the Pt0.3Mn5/SiO2-nc catalyst can completely oxidize MEK at just 163 °C under a high space velocity of 42600 mL gâ1 hâ1. The remarkable performance of these catalysts is attributed to a synergistic effect between the Pt nanoparticles and Mn2O3. NH3-TPD and NH3-FT-IR experiments revealed that exposed Mn2O3 (222) facets enhance the quantity of Brønsted acid sites in the catalyst, which are considered to be responsible for promoting the desorption of surface-adsorbed O2 and CO2. It is suggested that the desorption of these species liberates active sites for MEK molecules to adsorb and react. 18O2 isotopic labeling experiments revealed that the presence of a PtâOâMn moiety weakens the MnâO bonding interactions, which ultimately promotes the mobility of lattice oxygen in the Mn2O3 system. It was determined that the Mn4+/Mn3+ redox cycle in Mn2O3 allows for the donation of electrons to the Pt nanoparticles, enhancing the proportion of Pt0/Pt2+ and in turn increasing the activity and stability of catalyst. In situ DRIFTS, online FT-IR, and DFT studies revealed that acetone and acetaldehyde are the main intermediate species formed during the activation of MEK over the Pt0.3Mn5/SiO2-nc catalyst. Both intermediates were found to partake in sequential reactions resulting in the formation of H2O and CO2 via formaldehyde
- âŚ