397 research outputs found

    Variable selection for the multicategory SVM via adaptive sup-norm regularization

    Get PDF
    The Support Vector Machine (SVM) is a popular classification paradigm in machine learning and has achieved great success in real applications. However, the standard SVM can not select variables automatically and therefore its solution typically utilizes all the input variables without discrimination. This makes it difficult to identify important predictor variables, which is often one of the primary goals in data analysis. In this paper, we propose two novel types of regularization in the context of the multicategory SVM (MSVM) for simultaneous classification and variable selection. The MSVM generally requires estimation of multiple discriminating functions and applies the argmax rule for prediction. For each individual variable, we propose to characterize its importance by the supnorm of its coefficient vector associated with different functions, and then minimize the MSVM hinge loss function subject to a penalty on the sum of supnorms. To further improve the supnorm penalty, we propose the adaptive regularization, which allows different weights imposed on different variables according to their relative importance. Both types of regularization automate variable selection in the process of building classifiers, and lead to sparse multi-classifiers with enhanced interpretability and improved accuracy, especially for high dimensional low sample size data. One big advantage of the supnorm penalty is its easy implementation via standard linear programming. Several simulated examples and one real gene data analysis demonstrate the outstanding performance of the adaptive supnorm penalty in various data settings.Comment: Published in at http://dx.doi.org/10.1214/08-EJS122 the Electronic Journal of Statistics (http://www.i-journals.org/ejs/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Empirical Evaluation of Test Coverage for Functional Programs

    Get PDF
    The correlation between test coverage and test effectiveness is important to justify the use of coverage in practice. Existing results on imperative programs mostly show that test coverage predicates effectiveness. However, since functional programs are usually structurally different from imperative ones, it is unclear whether the same result may be derived and coverage can be used as a prediction of effectiveness on functional programs. In this paper we report the first empirical study on the correlation between test coverage and test effectiveness on functional programs. We consider four types of coverage: as input coverages, statement/branch coverage and expression coverage, and as oracle coverages, count of assertions and checked coverage. We also consider two types of effectiveness: raw effectiveness and normalized effectiveness. Our results are twofold. (1) In general the findings on imperative programs still hold on functional programs, warranting the use of coverage in practice. (2) On specific coverage criteria, the results may be unexpected or different from the imperative ones, calling for further studies on functional programs

    Higher-order multi-scale method for high-accuracy nonlinear thermo-mechanical simulation of heterogeneous shells

    Full text link
    In the present work, we consider multi-scale computation and convergence for nonlinear time-dependent thermo-mechanical equations of inhomogeneous shells possessing temperature-dependent material properties and orthogonal periodic configurations. The first contribution is that a novel higher-order macro-micro coupled computational model is rigorously devised via multi-scale asymptotic technique and Taylor series approach for high-accuracy simulation of heterogeneous shells. Benefitting from the higher-order corrected terms, the higher-order multi-scale computational model keeps the conservation of local energy and momentum for nonlinear thermo-mechanical simulation. Moreover, a global error estimation with explicit rate of higher-order multi-scale solutions is first derived in the energy norm sense. Furthermore, an efficient space-time numerical algorithm with off-line and on-line stages is presented in detail. Adequate numerical experiments are conducted to confirm the competitive advantages of the presented multi-scale approach, exhibiting not only the exceptional numerical accuracy, but also the less computational expense for heterogeneous shells

    Quantum Hall Effect in Bernal Stacked and Twisted Bilayer Graphene Grown on Cu by Chemical Vapor Deposition

    Full text link
    We examine the quantum Hall effect in bilayer graphene grown on Cu substrates by chemical vapor deposition. Spatially resolved Raman spectroscopy suggests a mixture of Bernal (A-B) stacked and rotationally faulted (twisted) domains. Magnetotransport measurements performed on bilayer domains with a wide 2D band reveal quantum Hall states (QHSs) at filling factors ν=4,8,12\nu=4, 8, 12 consistent with a Bernal stacked bilayer, while magnetotransport measurements in bilayer domains defined by a narrow 2D band show a superposition of QHSs of two independent monolayers. The analysis of the Shubnikov-de Haas oscillations measured in twisted graphene bilayers provides the carrier density in each layer as a function of the gate bias and the inter-layer capacitance.Comment: 5 pages, 4 figure

    Self-optimization wavelet-learning method for predicting nonlinear thermal conductivity of highly heterogeneous materials with randomly hierarchical configurations

    Full text link
    In the present work, we propose a self-optimization wavelet-learning method (SO-W-LM) with high accuracy and efficiency to compute the equivalent nonlinear thermal conductivity of highly heterogeneous materials with randomly hierarchical configurations. The randomly structural heterogeneity, temperature-dependent nonlinearity and material property uncertainty of heterogeneous materials are considered within the proposed self-optimization wavelet-learning framework. Firstly, meso- and micro-structural modeling of random heterogeneous materials are achieved by the proposed computer representation method, whose simulated hierarchical configurations have relatively high volume ratio of material inclusions. Moreover, temperature-dependent nonlinearity and material property uncertainties of random heterogeneous materials are modeled by a polynomial nonlinear model and Weibull probabilistic model, which can closely resemble actual material properties of heterogeneous materials. Secondly, an innovative stochastic three-scale homogenized method (STSHM) is developed to compute the macroscopic nonlinear thermal conductivity of random heterogeneous materials. Background meshing and filling techniques are devised to extract geometry and material features of random heterogeneous materials for establishing material databases. Thirdly, high-dimensional and highly nonlinear material features of material databases are preprocessed and reduced by wavelet decomposition technique. The neural networks are further employed to excavate the predictive models from dimension-reduced low-dimensional data
    corecore