19,120 research outputs found

    Electron Monte Carlo Simulations of Nanoporous Si Thin Films -- The Influence of Pore-Edge Charges

    Full text link
    Electron transport within nanostructures can be important to varied engineering applications, such as thermoelectrics and nanoelectronics. In theoretical studies, electron Monte Carlo simulations are widely used as an alternative approach to solving the electron Boltzmann transport equation, where the energy-dependent electron scattering, exact structure shape, and detailed electric field distribution can be fully incorporated. In this work, such electron Monte Carlo simulations are employed to predict the electrical conductivity of periodic nanoporous Si films that have been widely studied for thermoelectric applications. The focus is on the influence of pore-edge charges on the electron transport. The results are further compared to our previous modeling [Hao et al., J. Appl. Phys. 121, 094308 (2017)], where the pore-edge electric field has its own scattering rate to be added to the scattering rates of other mechanisms

    f(T)f(T) Theories and Varying Fine Structure Constant

    Get PDF
    In analogy to f(R)f(R) theory, recently a new modified gravity theory, namely the so-called f(T)f(T) theory, has been proposed to drive the current accelerated expansion without invoking dark energy. In the present work, by extending Bisabr's idea, we try to constrain f(T)f(T) theories with the varying fine structure "constant", αe2/c\alpha\equiv e^2/\hbar c. We find that the constraints on f(T)f(T) theories from the observational Δα/α\Delta\alpha/\alpha data are very severe. In fact, they make f(T)f(T) theories almost indistinguishable from Λ\LambdaCDM model.Comment: 12 pages, 4 figures, 1 table, revtex4; v2: discussions added, Phys. Lett. B in press; v3: published versio

    Satellite Broadcasting Enabled Blockchain Protocol: A Preliminary Study

    Full text link
    Low throughput has been the biggest obstacle of large-scale blockchain applications. During the past few years, researchers have proposed various schemes to improve the systems' throughput. However, due to the inherent inefficiency and defects of the Internet, especially in data broadcasting tasks, these efforts all rendered unsatisfactory. In this paper, we propose a novel blockchain protocol which utilizes the satellite broadcasting network instead of the traditional Internet for data broadcasting and consensus tasks. An automatic resumption mechanism is also proposed to solve the unique communication problems of satellite broadcasting. Simulation results show that the proposed algorithm has a lower communication cost and can greatly improve the throughput of the blockchain system. Theoretical estimation of a satellite broadcasting enabled blockchain system's throughput is 6,000,000 TPS with a 20 gbps satellite bandwidth.Comment: Accepted by 2020 Information Communication Technologies Conference (ICTC 2020

    Algebraic higher symmetry and categorical symmetry -- a holographic and entanglement view of symmetry

    Full text link
    We introduce the notion of algebraic higher symmetry, which generalizes higher symmetry and is beyond higher group. We show that an algebraic higher symmetry in a bosonic system in nn-dimensional space is characterized and classified by a local fusion nn-category. We find another way to describe algebraic higher symmetry by restricting to symmetric sub Hilbert space where symmetry transformations all become trivial. In this case, algebraic higher symmetry can be fully characterized by a non-invertible gravitational anomaly (i.e. an topological order in one higher dimension). Thus we also refer to non-invertible gravitational anomaly as categorical symmetry to stress its connection to symmetry. This provides a holographic and entanglement view of symmetries. For a system with a categorical symmetry, its gapped state must spontaneously break part (not all) of the symmetry, and the state with the full symmetry must be gapless. Using such a holographic point of view, we obtain (1) the gauging of the algebraic higher symmetry; (2) the classification of anomalies for an algebraic higher symmetry; (3) the equivalence between classes of systems, with different (potentially anomalous) algebraic higher symmetries or different sets of low energy excitations, as long as they have the same categorical symmetry; (4) the classification of gapped liquid phases for bosonic/fermionic systems with a categorical symmetry, as gapped boundaries of a topological order in one higher dimension (that corresponds to the categorical symmetry). This classification includes symmetry protected trivial (SPT) orders and symmetry enriched topological (SET) orders with an algebraic higher symmetry.Comment: 61 pages, 31 figure
    corecore